Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Представьте стаю воробьёв с выпученными глазами. Нет, это не гром, не ураган и даже не маленький мальчик с рогаткой в руках. Просто в самую гущу птенчиков летит огромное-огромное пушечное ядро. Именно так правила Лопиталя расправляются с пределами, в которых имеет место неопределённость или .

Правила Лопиталя – очень мощный метод, позволяющий быстро и эффективно устранить указанные неопределенности, не случайно в сборниках задач, на контрольных работах, зачётах часто встречается устойчивый штамп: «вычислить предел, не пользуясь правилом Лопиталя ». Выделенное жирным шрифтом требование можно с чистой совестью приписать и к любому пределу уроков Пределы. Примеры решений , Замечательные пределы . Методы решения пределов , Замечательные эквивалентности , где встречается неопределённость «ноль на ноль» либо «бесконечность на бесконечность». Даже если задание сформулировано коротко – «вычислить пределы», то негласно подразумевается, что вы будете пользоваться всем, чем угодно, но только не правилами Лопиталя.

Всего правил два, и они очень похожи друг на друга, как по сути, так и по способу применения. Кроме непосредственных примеров по теме, мы изучим и дополнительный материал, который будет полезен в ходе дальнейшего изучения математического анализа.

Сразу оговорюсь, что правила будут приведены в лаконичном «практическом» виде, и если вам предстоит сдавать теорию, рекомендую обратиться к учебнику за более строгими выкладками.

Первое правило Лопиталя

Рассмотрим функции , которые бесконечно малЫ в некоторой точке . Если существует предел их отношений , то в целях устранения неопределённости можно взять две производные – от числителя и от знаменателя. При этом: , то есть .

Примечание : предел тоже должен существовать, в противном случае правило не применимо.

Что следует из вышесказанного?

Во-первых, необходимо уметь находить производные функций , и чем лучше – тем лучше =)

Во-вторых, производные берутся ОТДЕЛЬНО от числителя и ОТДЕЛЬНО от знаменателя. Пожалуйста, не путайте с правилом дифференцирования частного !!!

И, в-третьих, «икс» может стремиться куда угодно, в том числе, к бесконечности – лишь бы была неопределённость .

Вернёмся к Примеру 5 первой статьи о пределах , в котором был получен следующий результат:

К неопределённости 0:0 применим первое правило Лопиталя:

Как видите, дифференцирование числителя и знаменателя привело нас к ответу с пол оборота: нашли две простые производные, подставили в них «двойку», и оказалось, что неопределённость бесследно исчезла!

Не редкость, когда правила Лопиталя приходится применять последовательно два или бОльшее количество раз (это относится и ко второму правилу). Вытащим на ретро-вечер Пример 2 урока о замечательных пределах :

На двухъярусной кровати снова прохлаждаются два бублика. Применим правило Лопиталя:

Обратите внимание, что на первом шаге в знаменателе берётся производная сложной функции . После этого проводим ряд промежуточных упрощений, в частности, избавляемся от косинуса, указывая, что он стремится к единице. Неопределённость не устранена, поэтому применяем правило Лопиталя ещё раз (вторая строчка).

Я специально подобрал не самый простой пример, чтобы вы провели небольшое самотестирование. Если не совсем понятно, как найдены производные , следует усилить свою технику дифференцирования, если не понятен фокус с косинусом, пожалуйста, вернитесь к замечательным пределам . Не вижу особого смысла в пошаговых комментариях, так как о производных и пределах я уже рассказал достаточно подробно. Новизна статьи состоит в самих правилах и некоторых технических приёмах решения.

Как уже отмечалось, в большинстве случаев правила Лопиталя использовать не нужно, но их зачастую целесообразно применять для черновой проверки решения. Зачастую, но далеко не всегда. Так, например, только что рассмотренный пример значительно выгоднее проверить через замечательные эквивалентности .

Второе правило Лопиталя

Брат-2 борется с двумя спящими восьмёрками . Аналогично:

Если существует предел отношения бесконечно больших в точке функций: , то в целях устранения неопределённости можно взять две производные – ОТДЕЛЬНО от числителя и ОТДЕЛЬНО от знаменателя. При этом: , то есть при дифференцировании числителя и знаменателя значение предела не меняется .

Примечание : предел должен существовать

Опять же, в различных практических примерах значение может быть разным , в том числе, бесконечным. Важно, чтобы была неопределённость .

Проверим Пример №3 первого урока: . Используем второе правило Лопиталя:

Коль скоро речь зашла о великанах, разберём два каноничных предела:

Пример 1

Вычислить предел

Получить ответ «обычными» методами непросто, поэтому для раскрытия неопределённости «бесконечность на бесконечность» используем правило Лопиталя:

Таким образом, линейная функция более высокого порядка роста , чем логарифм с основанием бОльшим единицы ( и т.д.). Разумеется, «иксы» в старших степенях тоже будут «перетягивать» такие логарифмы. Действительно, функция растёт достаточно медленно и её график является более пологим относительно того же «икса».

Пример 2

Вычислить предел

Ещё один примелькавшийся кадр. В целях устранения неопределённости , используем правило Лопиталя, причём, два раза подряд:

Показательная функция, с основанием, бОльшим единицы ( и т.д.) более высокого порядка роста , чем степенная функция с положительной степенью .

Похожие пределы встречаются в ходе полного исследования функции , а именно, при нахождении асимптот графиков . Также замечаются они и в некоторых задачах по теории вероятностей . Советую взять на заметку два рассмотренных примера, это один из немногих случаев, когда лучше дифференцирования числителя и знаменателя ничего нет.

Далее по тексту я не буду разграничивать первое и второе правило Лопиталя, это было сделано только в целях структурирования статьи. Вообще, с моей точки зрения, несколько вредно излишне нумеровать математические аксиомы, теоремы, правила, свойства, поскольку фразы вроде «согласно следствию 3 по теореме 19…» информативны только в рамках того или иного учебника. В другом источнике информации то же самое будет «следствием 2 и теоремой 3». Такие высказывания формальны и удобны разве что самим авторам. В идеале лучше ссылаться на суть математического факта. Исключение – исторически устоявшиеся термины, например, первый замечательный предел или второй замечательный предел .

Продолжаем разрабатывать тему, которую нам подкинул член Парижской академии наук маркиз Гийом Франсуа де Лопиталь. Статья приобретает ярко выраженную практическую окраску и в достаточно распространённом задании требуется:

Для разминки разберёмся с парой небольших воробушков:

Пример 3

Предел можно предварительно упростить, избавившись от косинуса, однако проявим уважение к условию и сразу продифференцируем числитель и знаменатель:

В самом процессе нахождения производных нет чего-то нестандартного, так, в знаменателе использовано обычное правило дифференцирования произведения .

Рассмотренный пример разруливается и через замечательные пределы , похожий случай разобран в конце статьи Сложные пределы .

Пример 4

Вычислить предел по правилу Лопиталя

Это пример для самостоятельного решения. Нормально пошутил =)

Типична ситуация, когда после дифференцирования получаются трех- или четырёхэтажные дроби:

Пример 5

Вычислить предел, используя правило Лопиталя

Напрашивается применение замечательной эквивалентности , но путь жёстко предопределён по условию:

После дифференцирования настоятельно рекомендую избавляться от многоэтажности дроби и проводить максимальные упрощения . Конечно, более подготовленные студенты могут пропустить последний шаг и сразу записать: , но в некоторых пределах запутаются даже отличники.

Пример 6

Вычислить предел, используя правило Лопиталя

Пример 7

Вычислить предел, используя правило Лопиталя

Это примеры для самостоятельного решения. В Примере 7 можно ничего не упрощать, слишком уж простой получается после дифференцирования дробь. А вот в Примере 8 после применения правила Лопиталя крайне желательно избавиться от трёхэтажности, поскольку вычисления будут не самыми удобными. Полное решение и ответ в конце урока. Если возникли затруднения – тригонометрическая таблица в помощь.

И, упрощения совершенно необходимы, когда после дифференцирования неопределённость не устранена .

Пример 8

Вычислить предел, используя правило Лопиталя

Поехали:

Интересно, что первоначальная неопределённость после первого дифференцирования превратилась в неопределённость , и правило Лопиталя невозмутимо применяется дальше. Также заметьте, как после каждого «подхода» устраняется четырёхэтажная дробь, а константы выносятся за знак предела. В более простых примерах константы удобнее не выносить, но когда предел сложный, упрощаем всё-всё-всё. Коварство решённого примера состоит ещё и в том, что при , а , поэтому в ходе ликвидации синусов немудрено запутаться в знаках. В предпоследней строчке синусы можно было и не убивать, но пример довольно тяжелый, простительно.

На днях мне попалось любопытное задание:

Пример 9

Если честно, немного засомневался, чему будет равен данный предел. Как демонстрировалось выше, «икс» более высокого порядка роста, чем логарифм, но «перетянет» ли он логарифм в кубе? Постарайтесь выяснить самостоятельно, за кем будет победа.

Да, правила Лопиталя – это не только пальба по воробьям из пушки, но ещё и кропотливая работа….

В целях применения правил Лопиталя к бубликам или уставшим восьмёркам сводятся неопределённости вида .

Расправа с неопределённостью подробно разобрана в Примерах №№9-13 урока Методы решения пределов . Давайте для проформы ещё один:

Пример 10

Вычислить предел функции, используя правило Лопиталя

На первом шаге приводим выражение к общему знаменателю, трансформируя тем самым неопределённость в неопределённость . А затем заряжаем правило Лопиталя:

Здесь, к слову, тот случай, когда четырёхэтажное выражение трогать бессмысленно.

Неопределённость тоже не сопротивляется превращению в или :

Пример 11

Вычислить предел функции с помощью правила Лопиталя

Предел здесь односторонний, и о таких пределах уже шла речь в методичке Графики и свойства функций . Как вы помните, графика «классического» логарифма не существует слева от оси , таким образом, мы можем приближаться к нулю только справа.

Правила Лопиталя для односторонних пределов работают, но сначала необходимо разобраться с неопределённостью . На первом шаге делаем дробь трёхэтажной, получая неопределённость , далее решение идёт по шаблонной схеме:

После дифференцирования числителя и знаменателя избавляемся от четырёхэтажной дроби, чтобы провести упрощения. В результате нарисовалась неопределённость . Повторяем трюк: снова делаем дробь трёхэтажной и к полученной неопределённости применяем правило Лопиталя ещё раз:

Готово.

Исходный предел можно было попытаться свести к двум бубликам:

Но, во-первых, производная в знаменателе труднее, а во-вторых, ничего хорошего из этого не выйдет.

Таким образом, перед решением похожих примеров нужно проанализировать (устно либо на черновике), К КАКОЙ неопределённости выгоднее свести – к «нулю на ноль» или к «бесконечности на бесконечность».

В свою очередь на огонёк подтягиваются собутыльники и более экзотические товарищи . Метод трансформации прост и стандартен.

  • Правило Лопиталя и раскрытие неопределённостей
  • Раскрытие неопределённостей видов "ноль делить на ноль" и "бесконечность делить на бесконечность"
  • Раскрытие неопределённостей вида "ноль умножить на бесконечность"
  • Раскрытие неопределённостей видов "ноль в степени ноль", "бесконечность в степени ноль" и "один в степени бесконечность"
  • Раскрытие неопределённостей вида "бесконечность минус бесконечность"

Правило Лопиталя и раскрытие неопределённостей

Раскрытие неопределённостей вида 0/0 или ∞/∞ и некоторых других неопределённостей значительно упрощается с помощью правила Лопиталя.

Суть правила Лопиталя состоит в том, что в случае, когда вычисление предела отношений двух функций даёт неопределённости видов 0/0 или ∞/∞, предел отношения двух функций можно заменить пределом отношения их производных и, таким образом, получить определённный результат.

Вообще, под правилами Лопиталя понимаются несколько теорем, которые могут быть переданы в следующей одной формулировке.

Правило Лопиталя . Если функции f (x ) и g (x ) дифференцируемы в некоторой окрестности точки , за исключением, может быть, самой точки , причём в этой окрестности

(1)

Иными словами, для неопределённостей вида 0/0 или ∞/∞ предел отношения двух функций равен пределу отношения их производных, если последний существует (конечный или бесконечный).

В равенстве (1) величина , к которой стремится переменная, может быть либо конечным числом, либо бесконечностью, либо минус бесконечностью.

К неопределённостям видов 0/0 и ∞/∞ могут быть сведены и неопределённости других видов.

Раскрытие неопределённостей видов "ноль делить на ноль" и "бесконечность делить на бесконечность"

Пример 1. Вычислить

x =2 приводит к неопределённости вида 0/0. Поэтому применим правило Лопиталя:

Пример 2. Вычислить

Решение. Подстановка в заданную функцию значения x

Пример 3. Вычислить

Решение. Подстановка в заданную функцию значения x =0 приводит к неопределённости вида 0/0. Поэтому применим правило Лопиталя:

Пример 4. Вычислить

Решение. Подстановка в заданную функцию значения икса, равного плюс бесконечности, приводит к неопределённости вида ∞/∞. Поэтому применим правило Лопиталя:

Замечание. Если предел отношения производных представляет собой неопределённость вида 0/0 или ∞/∞, то можно снова применить правило Лопиталя, т.е. перейти к пределу отношения вторых производных, и т.д.

Пример 5. Вычислить

Решение. Находим

Здесь правило Лопиталя применено дважды, поскольку и предел отношения функций, и предел отношения производных дают неопределённость вида ∞/∞.

Пример 6. Вычислить

Инструкция

Неопределенность вида [∞-∞], раскрывается, если имеется в виду разность каких-либо дробей. Приведя эту разность к общему знаменателю, получите некоторое отношение функций.

Неопределенности типа 0^∞, 1^∞, ∞^0 возникают при вычислении типа p(x)^q(x). В этом случае применяют предварительное дифференцирование. Тогда искомого предела А примет вид произведения, возможно, что с готовым знаменателем. Если нет, то можно использовать методику примера 3. Главное не забыть записать окончательный ответ в виде е^А (см. рис.5).

Видео по теме

Источники:

  • вычислить предел функции не пользуясь правилом лопиталя в 2019

Инструкция

Пределом называется некоторое число, к которому стремится переменная переменная или значение выражения. Обычно переменные или функции стремятся либо к нулю, либо к бесконечности. При пределе, нулю, величина считается бесконечно малой. Иными словами, бесконечно малыми называются величины, которые переменны и приближаются к нулю. Если стремится к бесконечности, то его называют бесконечным пределом. Обычно он записывается в виде:
lim x=+∞.

У есть ряд свойств, некоторые из которых представляют собой . Ниже представлены основные из них.
- одна величина имеет только один предел;

Предел постоянной величины равен величине этой постоянной;

Предел суммы равен сумме пределов: lim(x+y)=lim x + lim y;

Предел произведения равен произведению пределов: lim(xy)=lim x * lim y

Постоянный множитель может быть вынесен за знак предела: lim(Cx) = C * lim x, где C=const;

Предел частного равен частному пределов: lim(x/y)=lim x / lim y.

В задачах с пределами встречаются как числовые выражения, так и этих выражений. Это может выглядеть, в частности, следующим образом:
lim xn=a (при n→∞).
Ниже представлен несложного предела:
lim 3n +1 /n+1

n→∞.
Для решения этого предела поделите все выражение на n единиц. Известно, что если единица делится на некоторую величину n→∞, то предел 1/n равен нулю. Справедливо и обратное: если n→0, то 1/0=∞. Поделив весь пример на n, запишите его в представленном ниже виде и получите :
lim 3+1/n/1+1/n=3

При решении на пределы могут возникать результаты, которые называются неопределенностями. В таких случаях применяют правила Лопиталя. Для этого производят повторное функции, которое приведет пример в такую форму, в которой его можно было решить. Существуют два типа неопределенностей: 0/0 и ∞/∞. Пример c неопределенностью может выглядеть, в частности, следующим обращом:
lim 1-cosx/4x^2=(0/0)=lim sinx/8x=(0/0)=lim cosx/8=1/8

Видео по теме

Расчет пределов функций - фундамент математического анализа, которому посвящено немало страниц в учебниках. Однако подчас не понятно не только определение, но и сама суть предела. Говоря простым языком, предел - это приближение одной переменной величины, которая зависит от другой, к какому-то конкретному единственному значению по мере изменения этой другой величины. Для успешного вычисления достаточно держать в уме простой алгоритм решения.

Пусть при $x\to a$ функции $f(x)$ и $\varphi(x)$ обе бесконечно малые или обе бесконечно большие. Тогда их отношение не определено в точке $x=a$ , и в этом случае говорят, что оно представляет собой неопределенность типа $\left[\frac{0}{0}\right]$ или соответственно. Это отношение может иметь конечный или бесконечный предел в точке $x=a$ . Нахождение этого предела называется раскрытием неопределенности.

t_E1_p217_1
Теорема (Теорема Лопиталя-Бернулли.)
Пусть в некоторой окрестности $P$ точки $x=a$ функции $f(x)$ и $g(x)$ дифференцируемы всюду, кроме, может быть, самой точки $x=a$ , и пусть $g"(x)\neq0$ на $P$ . Если функции $f(x)$ и $\varphi(x)$ являются одновременно либо бесконечно малыми, либо бесконечно большими при $x\to a$ и при этом существует предел отношения $\frac{f"(x)}{\varphi"(x)}$ их производных при $x\to a$ , то тогда существует также и предел отношения $\frac{f(x)}{g(x)}$ самих функций, причем

(1)

\begin{align} \lim\limits_{x\to a}\frac{f(x)}{g(x)}=\lim\limits_{x\to a}\frac{f"(x)}{g"(x)}. \end{align}

Правило () применимо и в случае, когда $a=\infty$ .

m_KR_p156_1
Метод (Правило Лопиталя. Раскрытие неопределенностей типа $\left[\frac{0}{0}\right]$ и $\left[\frac{\infty}{\infty}\right]$ .)
В силу теоремы () существует общий способ нахождения предела отношений двух функций, основанный на равенстве
$$\lim\limits_{x\to a}\frac{f(x)}{g(x)}=\lim\limits_{x\to a}\frac{f"(x)}{g"(x)}.$$
Этот способ называется правилом Лопиталя .
Если для производных $f"(x)$ и $g"(x)$ выполняются условия теоремы (), то правило Лопиталя можно применять повторно:
$$\lim\limits_{x\to a}\frac{f(x)}{g(x)}=\lim\limits_{x\to a}\frac{f"(x)}{g"(x)}=\lim\limits_{x\to a}\frac{f""(x)}{g""(x)}.$$
При этом на каждом этапе применения правила Лопиталя следует пользоваться упрощающими отношение тождественными преобразованиями, а также комбинировать это правило с любыми другими приемами вычисления пределов.

e_E1_p218_1

Пример
Найти $$\lim\limits_{x\to0}\frac{e^{2x}-1}{\arctan5x}.$$
Используя формулу (), получаем: $$\lim\limits_{x\to0}\frac{e^{2x}-1}{\arctan5x}=\left[\frac{0}{0}\right]=\lim\limits_{x\to0}\frac{2e^{2x}}{\frac{1}{1+25x^2}\cdot5}=\frac{2}{5},$$ поскольку $e^{2x}\to1$ и $\frac{1}{1+25x^2}\to1$ при $x\to0$ .

e_E1_p218_1

Пример
Найти $$\lim\limits_{x\to\infty}\frac{\ln2x}{x^3}.$$
Применяя дважды формулу (), получаем: $$\lim\limits_{x\to+\infty}\frac{\ln^2x}{x^3}=\left[\frac{\infty}{\infty}\right]=\lim\limits_{x\to+\infty}\frac{\frac{2\ln x}{x}}{3x^2}=\frac{2}{3}\lim\limits_{x\to+\infty}\frac{\ln x}{x^3}=\frac{2}{3}\lim\limits_{x\to+\infty}\frac{\frac{1}{x}}{3x^2}=0.$$

e_E1_p218_1

Пример
Найти $$\lim\limits_{x\to0}\frac{\tan x-\sin x}{x^3}.$$
Используем формулу (): $$\lim\limits_{x\to0}\frac{\tan x-\sin x}{x^3}=\lim\limits_{x\to 0}\frac{\frac{1}{\cos^2x}-\cos x}{3x^2}=\frac{1}{3}\lim\limits_{x\to0}\frac{1-\cos^3x}{x^2\cos^2x}.$$
Освободим знаменатель дроби от множителя $\cos^2x$ , поскольку он имеет предел $1$ при $x\to0$ . Развернем стоящую в числителе разность кубов и освободим числитель от сомножителя $(1+\cos x+\cos^2x)$ , имеющего предел $3$ при $x\to0$ . После этих упрощений получаем $$\lim\limits_{x\to0}\frac{\tan x-\sin x}{x^3}=\lim\limits_{x\to0}\frac{1-\cos x}{x^2}.$$
Применим снова формулу (): $$\lim\limits_{x\to0}\frac{\tan x-\sin x}{x^3}=\lim\limits_{x\to0}\frac{1-\cos x}{x^2}=\lim\limits_{x\to0}\frac{\sin x}{2x}.$$
Используя первый замечательный предел, получаем окончательный ответ $\frac{1}{2}$ , уже не прибегая к правилу Лопиталя.

m_E1_p219_1
Метод (Правило Лопиталя. Раскрытие неопределенности типа $\left$ .)
Для вычисления $\lim\limits_{x\to a}f(x)g(x)$ , где $f(x)$ — бесконечно малая, а $g(x)$ — бесконечно большая функции при $x\to a$ , следует преобразовать произведение к виду $\frac{f(x)}{1/g(x)}$ (неопределенность типа $\left[\frac{0}{0}\right]$ ) или к виду $\frac{g(x)}{1/f(x)}$ (неопределенность типа $\left[\frac{\infty}{\infty}\right]$ ) и далее использовать правило Лопиталя.

e_E1_p219_1

Пример
Найти $$\lim\limits_{x\to1}\sin(x-1)\cdot\tan\frac{\pi x}{2}.$$
Имеем: $$\begin{array}{c}\lim\limits_{x\to1}\sin(x-1)\cdot\tan\frac{\pi x}{2}=\left=\lim\limits_{x\to1}\frac{\sin(x-1)}{\cot\frac{\pi x}{2}}=\left[\frac{0}{0}\right]=\\=\lim\limits_{x\to1}\frac{\cos(x-1)}{-\frac{\pi}{2}\frac{1}{\sin^2\frac{\pi x}{2}}}=-\frac{2}{\pi}\lim\limits_{x\to1}\cos(x-1)\sin^2\frac{\pi x}{2}=-\frac{2}{\pi}.\end{array}$$

m_E1_p220_1
Метод (Правило Лопиталя. Раскрытие неопределенности типа $\left[\infty-\infty\right]$ .)
Для вычисления $\lim\limits_{x\to a}(f(x)-g(x))$ , где $f(x)$ и $g(x)$ — бесконечно большие функции при $x\to a$ , следует преобразовать разность к виду $f(x)\left(1-\frac{g(x)}{f(x)}\right)$ , затем раскрыть неопределенность $\frac{g(x)}{f(x)}$ типа $\left[\frac{\infty}{\infty}\right]$ . Если $\lim\limits_{x\to a}\frac{g(x)}{f(x)}\neq1$ , то $\lim\limits_{x\to a}(f(x)-\varphi(x))=\infty$ . Если же $\lim\limits_{x\to a}\frac{\varphi(x)}{f(x)}=1$ , то получаем неопределенность типа $[\infty\cdot0]$ , рассмотренную ранее.

e_E1_p220_1

Пример
Найти $$\lim\limits_{x\to+\infty}(x-\ln^3x).$$
Имеем: $$\lim\limits_{x\to+\infty}(x-\ln^3x)=[\infty-\infty]=\lim\limits_{x\to+\infty}x\left(1-\frac{\ln^3x}{x}\right).$$
Так как $$\begin{array}{c}\lim\limits_{x\to+\infty}\frac{\ln^3x}{x}=\left[\frac{\infty}{\infty}\right]=\lim\limits_{x\to+\infty}\frac{3\ln^2x\cdot\frac{1}{x}}{1}=3\lim\limits_{x\to+\infty}\frac{\ln^2x}{x}=\\=3\lim\limits_{x\to+\infty}\frac{2\ln x\cdot\frac{1}{x}}{1}=6\lim\limits_{x\to+\infty}\frac{\ln x}{x}=6\lim\limits_{x\to+\infty}\frac{\frac{1}{x}}{1}=6\lim\limits_{x\to+\infty}\frac{1}{x}=0,\end{array}$$ то $$\lim\limits_{x\to+\infty}(x-\ln^3x)=+\infty.$$

m_E1_p221_1
Метод (Правило Лопиталя. Раскрытие неопределенностей типа $\left$ , $\left[\infty^0\right]$ , $\left$ .)
Во всех трех случаях имеется в виду вычисление предела выражения $\left(f(x)\right)^{g(x)}$ , где $f(x)$ есть в первом случае бесконечно малая, во втором случае — бесконечно большая, в третьем случае — функция, имеющая предел равный единице. Функция же $g(x)$ в первых двух случаях является бесконечно малой, а в третьем случае — бесконечно большой.
Логарифмируя выражение $\left(f(x)\right)^{g(x)}$ , получим равенство
$$\ln y=g(x)\ln f(x).$$
Найдем предел $\ln y$ , после чего найдем предел $y$ . Во всех трех случаях $\ln y$ является неопределенностью типа $$ , метод раскрытия которой изложен ранее.

e_E1_p221_1

Пример
Найти $$\lim\limits_{x\to+\infty}\left(1+\frac{1}{x}\right)^{2x}.$$
Введем обозначение $y=\left(1+\frac{1}{x}\right)^{2x}$ . Тогда $\ln y=2x\ln\left(1+\frac{1}{x}\right)$ является неопределенностью $[\infty\cdot0]$ . Преобразуя выражение $\ln y$ к виду $\ln y=2\frac{\ln\left(1+\frac{1}{x}\right)}{1/x}$ , находим по правилу Лопиталя $$\lim\limits_{x\to+\infty}\ln y=2\lim\limits_{x\to+\infty}\frac{\frac{1}{1+\frac{1}{x}}\left(-\frac{1}{x^2}\right)}{-\frac{1}{x^2}}=2\lim\limits_{x\to+\infty}\frac{1}{1+\frac{1}{x}}=2.$$
Следовательно, $$\lim\limits_{x\to+\infty}y=\lim\limits_{x\to+\infty}\left(1+\frac{1}{x}\right)^{2x}=e^2.$$

Этот математический калькулятор онлайн поможет вам если нужно вычислить предел функции . Программа решения пределов не просто даёт ответ задачи, она приводит подробное решение с пояснениями , т.е. отображает процесс вычисления предела.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Введите выражение функции
Вычислить предел

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Предел функции при х->х 0

Пусть функция f(x) определена на некотором множестве X и пусть точка \(x_0 \in X \) или \(x_0 \notin X \)

Возьмем из X последовательность точек, отличных от х 0:
x 1 , x 2 , x 3 , ..., x n , ... (1)
сходящуюся к х*. Значения функции в точках этой последовательности также образуют числовую последовательность
f(x 1), f(x 2), f(x 3), ..., f(x n), ... (2)
и можно ставить вопрос о существовании ее предела.

Определение . Число А называется пределом функции f(х) в точке х = х 0 (или при х -> x 0), если для любой сходящейся к x 0 последовательности (1) значений аргумента x, отличных от x 0 соответствующая последовательность (2) значений функции сходится к числу A.


$$ \lim_{x\to x_0}{ f(x)} = A $$

Функция f(x) может иметь в точке x 0 только один предел. Это следует из того, что последовательность
{f(x n)} имеет только один предел.

Существует другое определение предела функции.

Определение Число А называется пределом функции f(x) в точке х = x 0 , если для любого числа \(\varepsilon > 0 \) существует число \(\delta > 0 \) такое, что для всех \(x \in X, \; x \neq x_0 \), удовлетворяющих неравенству \(|x-x_0| Используя логические символы, это определение можно записать в виде
\((\forall \varepsilon > 0) (\exists \delta > 0) (\forall x \in X, \; x \neq x_0, \; |x-x_0| Отметим, что неравенства \(x \neq x_0, \; |x-x_0| Первое определение основано на понятии предела числовой последовательности, поэтому его часто называют определением «на языке последовательностей». Второе определение называют определением «на языке \(\varepsilon - \delta \)».
Эти два определения предела функции эквивалентны и можно использовать любое из них в зависимости от того, какое более удобно при решении той или иной задачи.

Заметим, что определение предела функции «на языке последовательностей» называют также определением предела функции по Гейне, а определение предела функции «на языке \(\varepsilon - \delta \)» - определением предела функции по Коши.

Предел функции при x->x 0 - и при x->x 0 +

В дальнейшем будут использованы понятия односторонних пределов функции, которые определяются следующим образом.

Определение Число А называется правым (левым) пределом функции f(x) в точке x 0 , если для любой сходящейся к x 0 последовательности (1), элементы x n которой больше (меньше) x 0 , соответствующая последовательность (2) сходится к А.

Символически это записывается так:
$$ \lim_{x \to x_0+} f(x) = A \; \left(\lim_{x \to x_0-} f(x) = A \right) $$

Можно дать равносильное определение односторонних пределов функции «на языке \(\varepsilon - \delta \)»:

Определение число А называется правым (левым) пределом функции f(х) в точке x 0 , если для любого \(\varepsilon > 0 \) существует \(\delta > 0 \) такое, что для всех x, удовлетворяющих неравенствам \(x_0 Символические записи:

\((\forall \varepsilon > 0) (\exists \delta > 0) (\forall x, \; x_0

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ