Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Начальный уровень

Уравнение касательной к графику функции. Исчерпывающий гид (2019)

Ты уже знаешь что такое производная? Если нет, сперва прочти тему . Итак, ты говоришь, что знаешь производную. Сейчас проверим. Найди приращение функции при приращении аргумента, равном. Справился? Должно получиться. А теперь найди производную функции в точке. Ответ: . Получилось? Если в каком-нибудь из этих примеров возникли сложности, настоятельно рекомендую вернуться к теме и проштудировать ее еще раз. Знаю, тема очень большая, но иначе нет смысла идти дальше. Рассмотрим график какой-то функции:

Выберем на линии графика некую точку. Пусть ее абсцисса, тогда ордината равна. Затем выберем близкую к точке точку с абсциссой; ее ордината - это:

Проведем прямую через эти точки. Она называется секущей (прямо как в геометрии). Обозначим угол наклона прямой к оси как. Как и в тригонометрии, этот угол отсчитывается от положительного направления оси абсцисс против часовой стрелки. Какие значения может принимать угол? Как ни наклоняй эту прямую, все равно одна половина будет торчать вверх. Поэтому максимально возможный угол - , а минимально возможный - . Значит, . Угол не включается, поскольку положение прямой в этом случае в точности совпадает с, а логичнее выбирать меньший угол. Возьмем на рисунке такую точку, чтобы прямая была параллельна оси абсцисс, а - ординат:

По рисунку видно, что, а. Тогда отношение приращений:

(так как, то - прямоугольный).

Давай теперь уменьшать. Тогда точка будет приближаться к точке. Когда станет бесконечно малым, отношение станет равно производной функции в точке. Что же при этом станет с секущей? Точка будет бесконечно близка к точке, так что их можно будет считать одной и той же точкой. Но прямая, имеющая с кривой только одну общую точку - это ни что иное, как касательная (в данном случае это условие выполняется только на небольшом участке - вблизи точки, но этого достаточно). Говорят, что при этом секущая занимает предельное положение .

Угол наклона секущей к оси назовем. Тогда получится, что производная

то есть производная равна тангенсу угла наклона касательной к графику функции в данной точке.

Поскольку касательная - это прямая, давай теперь вспомним уравнение прямой:

За что отвечает коэффициент? За наклон прямой. Он так и называется: угловой коэффициент . Что это значит? А то, что равен он тангенсу угла между прямой и осью! То есть вот что получается:

Но мы получили это правило, рассматривая возрастающую функцию. А что изменится, если функция будет убывающей? Посмотрим:
Теперь углы и тупые. А приращение функции - отрицательное. Снова рассмотрим: . С другой стороны, . Получаем: , то есть все, как и в прошлый раз. Снова устремим точку к точке, и секущая примет предельное положение, то есть превратится в касательную к графику функции в точке. Итак, сформулируем окончательно полученное правило:
Производная функции в данной точке равна тангенсу угла наклона касательной к графику функции в этой точке, или (что то же самое) угловому коэффициенту этой касательной:

Это и есть геометрический смысл производной. Окей, все это интересно, но зачем оно нам? Вот пример:
На рисунке изображен график функции и касательная к нему в точке с абсциссой. Найдите значение производной функции в точке.
Решение.
Как мы недавно выяснили, значение производной в точке касания равно угловому коэффициенту касательной, который в свою очередь равен тангенсу угла наклона данной касательной к оси абсцисс: . Значит, для нахождения значения производной нам нужно найти тангенс угла наклона касательной. На рисунке у нас отмечено две точки, лежащие на касательной, координаты которых нам известны. Так давай достроим прямоугольный треугольник, проходящий через эти точки, и найдем тангенс угла наклона касательной!

Угол наклона касательной к оси - это. Найдем тангенс этого угла: . Таким образом, производная функции в точке равна.
Ответ: . Теперь попробуй сам:

Ответы:

Зная геометрический смысл производной , можно очень просто объяснить правило, что производная в точке локального максимума или минимума равна нулю. Действительно, касательная к графику в этих точках «горизонтальна», то есть параллельна оси абсцисс:

А чему равен угол между параллельными прямыми? Конечно, нулю! А тангенс нуля тоже равен нулю. Вот и производная равна нулю:

Более подробно об этом читай в теме «Монотонность функций. Точки экстремума».

А сейчас сосредоточимся на произвольных касательных. Предположим, у нас есть какая-то функция, например, . Мы нарисовали ее график и хотим провести касательную к нему в какой-нибудь точке. Например, в точке. Берем линейку, пристраиваем ее к графику и чертим:

Что мы знаем об этой прямой? Что самое важное нужно знать о прямой на координатной плоскости? Поскольку прямая - это изображение линейной функции, очень удобно было бы знать ее уравнение. То есть коэффициенты и в уравнении

Но ведь мы уже знаем! Это угловой коэффициент касательной, который равен производной функции в этой точке:

В нашем примере будет так:

Теперь остается найти. Это проще простого: ведь - значение при. Графически - это координата пересечения прямой с осью ординат (ведь во всех точках оси):

Проведём (так, что - прямоугольный). Тогда (тому самому углу между касательной и осью абсцисс). Чему равны и? По рисунку явно видно, что, а. Тогда получаем:

Соединяем все полученные формулы в уравнение прямой:

Теперь реши сам:

  1. Найди уравнение касательной к функции в точке.
  2. Касательная к параболе пересекает ось под углом. Найди уравнение этой касательной.
  3. Прямая параллельна касательной к графику функции. Найдите абсциссу точки касания.
  4. Прямая параллельна касательной к графику функции. Найдите абсциссу точки касания.

Решения и ответы:


УРАВНЕНИЕ КАСАТЕЛЬНОЙ К ГРАФИКУ ФУНКЦИИ. КРАТКОЕ ОПИСАНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Производная функции в конкретной точке равна тангенсу угла наклона касательной к графику функции в этой точке, или угловому коэффициенту этой касательной:

Уравнение касательной к графику функции в точке:

Алгоритм действий для нахождения уравнения касательной:

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье - 299 руб.
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - 999 руб.

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Во втором случае мы подарим тебе тренажер “6000 задач с решениями и ответами, по каждой теме, по всем уровням сложности”. Его точно хватит, чтобы набить руку на решении задач по любой теме.

На самом деле это намного больше, чем просто тренажер - целая программа подготовки. Если понадобится, ты сможешь ею так же воспользоваться БЕСПЛАТНО.

Доступ ко всем текстам и программам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Пример 1. Дана функция f (x ) = 3x 2 + 4x – 5. Напишем уравнение касательной к графику функции f (x ) в точке графика с абсциссой x 0 = 1.

Решение. Производная функции f (x ) существует для любого x R . Найдем ее:

= (3x 2 + 4x – 5)′ = 6x + 4.

Тогда f (x 0) = f (1) = 2; (x 0) = = 10. Уравнение касательной имеет вид:

y = (x 0) (x x 0) + f (x 0),

y = 10(x – 1) + 2,

y = 10x – 8.

Ответ. y = 10x – 8.

Пример 2. Дана функция f (x ) = x 3 – 3x 2 + 2x + 5. Напишем уравнение касательной к графику функции f (x ), параллельной прямой y = 2x – 11.

Решение. Производная функции f (x ) существует для любого x R . Найдем ее:

= (x 3 – 3x 2 + 2x + 5)′ = 3x 2 – 6x + 2.

Так как касательная к графику функции f (x ) в точке с абсциссой x 0 параллельна прямой y = 2x – 11, то ее угловой коэффициент равен 2, т. е. (x 0) = 2. Найдем эту абсциссу из условия, что 3x – 6x 0 + 2 = 2. Это равенство справедливо лишь при x 0 = 0 и при x 0 = 2. Так как в том и в другом случае f (x 0) = 5, то прямая y = 2x + b касается графика функции или в точке (0; 5), или в точке (2; 5).

В первом случае верно числовое равенство 5 = 2×0 + b , откуда b = 5, а во втором случае верно числовое равенство 5 = 2×2 + b , откуда b = 1.

Итак, существует две касательные y = 2x + 5 и y = 2x + 1 к графику функции f (x ), параллельные прямой y = 2x – 11.

Ответ. y = 2x + 5, y = 2x + 1.

Пример 3. Дана функция f (x ) = x 2 – 6x + 7. Напишем уравнение касательной к графику функции f (x ), проходящей через точку A (2; –5).

Решение. Так как f (2) –5, то точка A не принадлежит графику функции f (x ). Пусть x 0 - абсцисса точки касания.

Производная функции f (x ) существует для любого x R . Найдем ее:

= (x 2 – 6x + 1)′ = 2x – 6.

Тогда f (x 0) = x – 6x 0 + 7; (x 0) = 2x 0 – 6. Уравнение касательной имеет вид:

y = (2x 0 – 6)(x x 0) + x – 6x + 7,

y = (2x 0 – 6)x x + 7.

Так как точка A принадлежит касательной, то справедливо числовое равенство

–5 = (2x 0 – 6)×2– x + 7,

откуда x 0 = 0 или x 0 = 4. Это означает, что через точку A можно провести две касательные к графику функции f (x ).

Если x 0 = 0, то уравнение касательной имеет вид y = –6x + 7. Если x 0 = 4, то уравнение касательной имеет вид y = 2x – 9.

Ответ. y = –6x + 7, y = 2x – 9.

Пример 4. Даны функции f (x ) = x 2 – 2x + 2 и g (x ) = –x 2 – 3. Напишем уравнение общей касательной к графикам этих функции.

Решение. Пусть x 1 - абсцисса точки касания искомой прямой с графиком функции f (x ), а x 2 - абсцисса точки касания той же прямой с графиком функции g (x ).

Производная функции f (x ) существует для любого x R . Найдем ее:

= (x 2 – 2x + 2)′ = 2x – 2.

Тогда f (x 1) = x – 2x 1 + 2; (x 1) = 2 x 1 – 2. Уравнение касательной имеет вид:

y = (2x 1 – 2)(x x 1) + x – 2x 1 + 2,

y = (2x 1 – 2)x x + 2. (1)

Найдем производную функции g (x ):

= (–x 2 – 3)′ = –2x .

Касательная – это прямая, проходящая через точку кривой и совпадающая с ней в этой точке с точностью до первого порядка (рис.1).

Другое определение : это предельное положение секущей при Δx →0.

Пояснение : Возьмем прямую, пересекающую кривую в двух точках: А и b (см.рисунок). Это секущая. Будем поворачивать ее по часовой стрелке до тех пор, пока она не обретет только одну общую точку с кривой. Так мы получим касательную.

Строгое определение касательной:

Касательная к графику функции f , дифференцируемой в точке x о , - это прямая, проходящая через точку (x о ; f (x о )) и имеющая угловой коэффициент f ′(x о ).

Угловой коэффициент имеет прямая вида y = kx + b . Коэффициент k и является угловым коэффициентом этой прямой.

Угловой коэффициент равен тангенсу острого угла, образуемого этой прямой с осью абсцисс:


k = tg α

Здесь угол α – это угол между прямой y = kx + b и положительным (то есть против часовой стрелки) направлением оси абсцисс. Он называется углом наклона прямой (рис.1 и 2).

Если угол наклона прямой y = kx + b острый, то угловой коэффициент является положительным числом. График возрастает (рис.1).

Если угол наклона прямой y = kx + b тупой, то угловой коэффициент является отрицательным числом. График убывает (рис.2).

Если прямая параллельна оси абсцисс, то угол наклона прямой равен нулю. В этом случае угловой коэффициент прямой тоже равен нулю (так как тангенс нуля есть ноль). Уравнение прямой будет иметь вид y = b (рис.3).

Если угол наклона прямой равен 90º (π/2), то есть она перпендикулярна оси абсцисс, то прямая задается равенством x = c , где c – некоторое действительное число (рис.4).

Уравнение касательной к графику функции y = f (x ) в точке x о :


Пример : Найдем уравнение касательной к графику функции f (x ) = x 3 – 2x 2 + 1 в точке с абсциссой 2.

Решение .

Следуем алгоритму.

1) Точка касания x о равна 2. Вычислим f (x о ):

f (x о ) = f (2) = 2 3 – 2 ∙ 2 2 + 1 = 8 – 8 + 1 = 1

2) Находим f ′(x ). Для этого применяем формулы дифференцирования, изложенные в предыдущем разделе. Согласно этим формулам, х 2 = 2х , а х 3 = 3х 2 . Значит:

f ′(x ) = 3х 2 – 2 ∙ 2х = 3х 2 – 4х .

Теперь, используя полученное значение f ′(x ), вычислим f ′(x о ):

f ′(x о ) = f ′(2) = 3 ∙ 2 2 – 4 ∙ 2 = 12 – 8 = 4.

3) Итак, у нас есть все необходимые данные: x о = 2, f (x о ) = 1, f ′(x о ) = 4. Подставляем эти числа в уравнение касательной и находим окончательное решение:

у = f (x о ) + f ′(x о ) (x – x о ) = 1 + 4 ∙ (х – 2) = 1 + 4х – 8 = –7 + 4х = 4х – 7.

Ответ : у = 4х – 7.

На современном этапе развития образования в качестве одной из основных его задач выступает формирование творчески мыслящей личности. Способность же к творчеству у учащихся может быть развита лишь при условии систематического привлечения их к основам исследовательской деятельности. Фундаментом для применения учащимися своих творческих сил, способностей и дарований являются сформированные полноценные знания и умения. В связи с этим проблема формирования системы базовых знаний и умений по каждой теме школьного курса математики имеет немаловажное значение. При этом полноценные умения должны являться дидактической целью не отдельных задач, а тщательно продуманной их системы. В самом широком смысле под системой понимается совокупность взаимосвязанных взаимодействующих элементов, обладающая целостностью и устойчивой структурой.

Рассмотрим методику обучения учащихся составлению уравнения касательной к графику функции. По существу, все задачи на отыскание уравнения касательной сводятся к необходимости отбора из множества (пучка, семейства) прямых тех из них, которые удовлетворяют определенному требованию – являются касательными к графику некоторой функции. При этом множество прямых, из которого осуществляется отбор, может быть задано двумя способами:

а) точкой, лежащей на плоскости xOy (центральный пучок прямых);
б) угловым коэффициентом (параллельный пучок прямых).

В связи с этим при изучении темы «Касательная к графику функции» с целью вычленения элементов системы нами были выделены два типа задач:

1) задачи на касательную, заданную точкой, через которую она проходит;
2) задачи на касательную, заданную ее угловым коэффициентом.

Обучение решению задач на касательную осуществлялось при помощи алгоритма, предложенного А.Г. Мордковичем . Его принципиальное отличие от уже известных заключается в том, что абсцисса точки касания обозначается буквой a (вместо x0), в связи с чем уравнение касательной приобретает вид

y = f(a) + f "(a)(x – a)

(сравните с y = f(x 0) + f "(x 0)(x – x 0)). Этот методический прием, на наш взгляд, позволяет учащимся быстрее и легче осознать, где в общем уравнении касательной записаны координаты текущей точки, а где – точки касания.

Алгоритм составления уравнения касательной к графику функции y = f(x)

1. Обозначить буквой a абсциссу точки касания.
2. Найти f(a).
3. Найти f "(x) и f "(a).
4. Подставить найденные числа a, f(a), f "(a) в общее уравнение касательной y = f(a) = f "(a)(x – a).

Этот алгоритм может быть составлен на основе самостоятельного выделения учащимися операций и последовательности их выполнения.

Практика показала, что последовательное решение каждой из ключевых задач при помощи алгоритма позволяет формировать умения написания уравнения касательной к графику функции поэтапно, а шаги алгоритма служат опорными пунктами действий. Данный подход соответствует теории поэтапного формирования умственных действий, разработанной П.Я. Гальпериным и Н.Ф. Талызиной .


В первом типе задач были выделены две ключевые задачи:

  • касательная проходит через точку, лежащую на кривой (задача 1);
  • касательная проходит через точку, не лежащую на кривой (задача 2).

Задача 1. Составьте уравнение касательной к графику функции в точке M(3; – 2).

Решение. Точка M(3; – 2) является точкой касания, так как

1. a = 3 – абсцисса точки касания.
2. f(3) = – 2.
3. f "(x) = x 2 – 4, f "(3) = 5.
y = – 2 + 5(x – 3), y = 5x – 17 – уравнение касательной.

Задача 2. Напишите уравнения всех касательных к графику функции y = – x 2 – 4x + 2, проходящих через точку M(– 3; 6).

Решение. Точка M(– 3; 6) не является точкой касания, так как f(– 3) ­ 6 (рис. 2).


2. f(a) = – a 2 – 4a + 2.
3. f "(x) = – 2x – 4, f "(a) = – 2a – 4.
4. y = – a 2 – 4a + 2 – 2(a + 2)(x – a) – уравнение касательной.

Касательная проходит через точку M(– 3; 6), следовательно, ее координаты удовлетворяют уравнению касательной.

6 = – a 2 – 4a + 2 – 2(a + 2)(– 3 – a),
a 2 + 6a + 8 = 0 ^ a 1 = – 4, a 2 = – 2.

Если a = – 4, то уравнение касательной имеет вид y = 4x + 18.

Если a = – 2, то уравнение касательной имеет вид y = 6.

Во втором типе ключевыми задачами будут следующие:

  • касательная параллельна некоторой прямой (задача 3);
  • касательная проходит под некоторым углом к данной прямой (задача 4).

Задача 3. Напишите уравнения всех касательных к графику функции y = x 3 – 3x 2 + 3, параллельных прямой y = 9x + 1.

1. a – абсцисса точки касания.
2. f(a) = a 3 – 3a 2 + 3.
3. f "(x) = 3x 2 – 6x, f "(a) = 3a 2 – 6a.

Но, с другой стороны, f "(a) = 9 (условие параллельности). Значит, надо решить уравнение 3a 2 – 6a = 9. Его корни a = – 1, a = 3 (рис. 3).

4. 1) a = – 1;
2) f(– 1) = – 1;
3) f "(– 1) = 9;
4) y = – 1 + 9(x + 1);

y = 9x + 8 – уравнение касательной;

1) a = 3;
2) f(3) = 3;
3) f "(3) = 9;
4) y = 3 + 9(x – 3);

y = 9x – 24 – уравнение касательной.

Задача 4. Напишите уравнение касательной к графику функции y = 0,5x 2 – 3x + 1, проходящей под углом 45° к прямой y = 0 (рис. 4).

Решение. Из условия f "(a) = tg 45° найдем a: a – 3 = 1 ^ a = 4.

1. a = 4 – абсцисса точки касания.
2. f(4) = 8 – 12 + 1 = – 3.
3. f "(4) = 4 – 3 = 1.
4. y = – 3 + 1(x – 4).

y = x – 7 – уравнение касательной.

Несложно показать, что решение любой другой задачи сводится к решению одной или нескольких ключевых задач. Рассмотрим в качестве примера следующие две задачи.

1. Напишите уравнения касательных к параболе y = 2x 2 – 5x – 2, если касательные пересекаются под прямым углом и одна из них касается параболы в точке с абсциссой 3 (рис. 5).

Решение. Поскольку дана абсцисса точки касания, то первая часть решения сводится к ключевой задаче 1.

1. a = 3 – абсцисса точки касания одной из сторон прямого угла.
2. f(3) = 1.
3. f "(x) = 4x – 5, f "(3) = 7.
4. y = 1 + 7(x – 3), y = 7x – 20 – уравнение первой касательной.

Пусть a – угол наклона первой касательной. Так как касательные перпендикулярны, то – угол наклона второй касательной. Из уравнения y = 7x – 20 первой касательной имеем tg a = 7. Найдем

Это значит, что угловой коэффициент второй касательной равен .

Дальнейшее решение сводится к ключевой задаче 3.

Пусть B(c; f(c)) есть точка касания второй прямой, тогда

1. – абсцисса второй точки касания.
2.
3.
4.
– уравнение второй касательной.

Примечание. Угловой коэффициент касательной может быть найден проще, если учащимся известно соотношение коэффициентов перпендикулярных прямых k 1 k 2 = – 1.

2. Напишите уравнения всех общих касательных к графикам функций

Решение. Задача сводится к отысканию абсцисс точек касания общих касательных, то есть к решению ключевой задачи 1 в общем виде, составлению системы уравнений и последующему ее решению (рис. 6).

1. Пусть a – абсцисса точки касания, лежащей на графике функции y = x 2 + x + 1.
2. f(a) = a 2 + a + 1.
3. f "(a) = 2a + 1.
4. y = a 2 + a + 1 + (2a + 1)(x – a) = (2a + 1)x + 1 – a 2 .

1. Пусть c – абсцисса точки касания, лежащей на графике функции
2.
3. f "(c) = c.
4.

Так как касательные общие, то

Итак, y = x + 1 и y = – 3x – 3 – общие касательные.

Основная цель рассмотренных задач – подготовить учащихся к самостоятельному распознаванию типа ключевой задачи при решении более сложных задач, требующих определенных исследовательских умений (умения анализировать, сравнивать, обобщать, выдвигать гипотезу и т. д.). К числу таких задач можно отнести любую задачу, в которую ключевая задача входит как составляющая. Рассмотрим в качестве примера задачу (обратную задаче 1) на нахождение функции по семейству ее касательных.

3. При каких b и c прямые y = x и y = – 2x являются касательными к графику функции y = x 2 + bx + c?

Пусть t – абсцисса точки касания прямой y = x с параболой y = x 2 + bx + c; p – абсцисса точки касания прямой y = – 2x с параболой y = x 2 + bx + c. Тогда уравнение касательной y = x примет вид y = (2t + b)x + c – t 2 , а уравнение касательной y = – 2x примет вид y = (2p + b)x + c – p 2 .

Составим и решим систему уравнений

Ответ:

Тип задания: 7

Условие

Прямая y=3x+2 является касательной к графику функции y=-12x^2+bx-10. Найдите b , учитывая, что абсцисса точки касания меньше нуля.

Показать решение

Решение

Пусть x_0 — абсцисса точки на графике функции y=-12x^2+bx-10, через которую проходит касательная к этому графику.

Значение производной в точке x_0 равно угловому коэффициенту касательной, то есть y"(x_0)=-24x_0+b=3. С другой стороны, точка касания принадлежит одновременно и графику функции и касательной, то есть -12x_0^2+bx_0-10=3x_0+2. Получаем систему уравнений \begin{cases} -24x_0+b=3,\\-12x_0^2+bx_0-10=3x_0+2. \end{cases}

Решая эту систему, получим x_0^2=1, значит либо x_0=-1, либо x_0=1. Согласно условию абсцисса точки касания меньше нуля, поэтому x_0=-1, тогда b=3+24x_0=-21.

Ответ

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Прямая y=-3x+4 параллельна касательной к графику функции y=-x^2+5x-7. Найдите абсциссу точки касания.

Показать решение

Решение

Угловой коэффициент прямой к графику функции y=-x^2+5x-7 в произвольной точке x_0 равен y"(x_0). Но y"=-2x+5, значит, y"(x_0)=-2x_0+5. Угловой коэффициент прямой y=-3x+4, указанной в условии, равен -3. Параллельные прямые имеют одинаковые угловые коэффициенты. Поэтому находим такое значение x_0, что =-2x_0 +5=-3.

Получаем: x_0 = 4.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Показать решение

Решение

По рисунку определяем, что касательная проходит через точки A(-6; 2) и B(-1; 1). Обозначим через C(-6; 1) точку пересечения прямых x=-6 и y=1, а через \alpha угол ABC (на рисунке видно, что он острый). Тогда прямая AB образует с положительным направлением оси Ox угол \pi -\alpha, который является тупым.

Как известно, tg(\pi -\alpha) и будет значением производной функции f(x) в точке x_0. Заметим, что tg \alpha =\frac{AC}{CB}=\frac{2-1}{-1-(-6)}=\frac15. Отсюда по формулам приведения получаем: tg(\pi -\alpha) =-tg \alpha =-\frac15=-0,2.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Прямая y=-2x-4 является касательной к графику функции y=16x^2+bx+12. Найдите b , учитывая, что абсцисса точки касания больше нуля.

Показать решение

Решение

Пусть x_0 — абсцисса точки на графике функции y=16x^2+bx+12, через которую

проходит касательная к этому графику.

Значение производной в точке x_0 равно угловому коэффициенту касательной, то есть y"(x_0)=32x_0+b=-2. С другой стороны, точка касания принадлежит одновременно и графику функции и касательной, то есть 16x_0^2+bx_0+12=-2x_0-4. Получаем систему уравнений \begin{cases} 32x_0+b=-2,\\16x_0^2+bx_0+12=-2x_0-4. \end{cases}

Решая систему, получим x_0^2=1, значит либо x_0=-1, либо x_0=1. Согласно условию абсцисса точки касания больше нуля, поэтому x_0=1, тогда b=-2-32x_0=-34.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

На рисунке изображён график функции y=f(x), определённой на интервале (-2; 8). Определите количество точек, в которых касательная к графику функции параллельна прямой y=6.

Показать решение

Решение

Прямая y=6 параллельна оси Ox . Поэтому находим такие точки, в которых касательная к графику функции параллельна оси Ox. На данном графике такими точками являются точки экстремума (точки максимума или минимума). Как видим, точек экстремума 4 .

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

Прямая y=4x-6 параллельна касательной к графику функции y=x^2-4x+9. Найдите абсциссу точки касания.

Показать решение

Решение

Угловой коэффициент касательной к графику функции y=x^2-4x+9 в произвольной точке x_0 равен y"(x_0). Но y"=2x-4, значит, y"(x_0)=2x_0-4. Угловой коэффициент касательной y=4x-7, указанной в условии, равен 4 . Параллельные прямые имеют одинаковые угловые коэффициенты. Поэтому находим такое значение x_0, что 2x_0-4=4. Получаем: x_0=4.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 7
Тема: Геометрический смысл производной. Касательная к графику функции

Условие

На рисунке изображены график функции y=f(x) и касательная к нему в точке с абсциссой x_0. Найдите значение производной функции f(x) в точке x_0.

Показать решение

Решение

По рисунку определяем, что касательная проходит через точки A(1; 1) и B(5; 4). Обозначим через C(5; 1) точку пересечения прямых x=5 и y=1, а через \alpha угол BAC (на рисунке видно, что он острый). Тогда прямая AB образует с положительным направлением оси Ox угол \alpha.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ