Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Думаю, не мне одной хотелось и хочется объединить формулу, описывающую гравитационное взаимодействие тел (Закон всемирного тяготения ) , с формулой, посвященной взаимодействию электрических зарядов (Закон Кулона ). Так давайте сделаем это!

Необходимо поставить знак равенства между понятиями масса и положительный заряд , а также между понятиями антимасса и отрицательный заряд .

Положительный заряд (или масса) характеризует частицы Инь (с Полями Притяжения) – т.е. поглощающие эфир из окружающего эфирного поля.

А отрицательный заряд (или антимасса) характеризует частицы Ян (с Полями Отталкивания) – т.е. испускающие эфир в окружающее эфирное поле.

Собственно говоря, масса (или положительный заряд), а также антимасса (или отрицательный заряд) указывает нам на то, что данная частица поглощает (или испускает) Эфир.

Что касается положения электродинамики о том, что происходит отталкивание одинаковых по знаку зарядов (как отрицательных, так и положительных) и притяжение друг к другу разных по знаку зарядов, то оно не совсем точно. И причина этого – не совсем верное толкование опытов по электромагнетизму.

Частицы с Полями Притяжения (положительно заряженные) никогда не будут отталкиваться друг от друга. Они только притягиваются. А вот частицы с Полями Отталкивания (отрицательно заряженные), действительно, всегда будут отталкиваться друг от друга (в том числе и от отрицательного полюса магнита).

Частицы с Полями Притяжения (положительно заряженные) притягивают к себе любые частицы: как отрицательно заряженные (с Полями Отталкивания), так и положительно заряженные (с Полями Притяжения). Однако если обе частицы обладают Полем Притяжения, то та из них, чье Поле Притяжения больше, будет в большей мере смещать к себе другую частицу, нежели это будет делать частица с меньшим Полем Притяжения.



Вещество – антивещество.

В физике материей называют тела, а также химические элементы, из которых эти тела построены, и еще элементарные частицы. В целом можно считать приблизительно верным использование этого термина подобным образом. Ведь Материя , с эзотерической точки зрения, это силовые центры, сферы элементарных частиц. Химические элементы построены из элементарных частиц, а тела – из химических элементов. Но в конечном итоге выходит так, что все состоит из элементарных частиц. Но если быть точной, то вокруг себя мы видим не Материю, а Души – т.е. элементарные частицы. Элементарная частица в отличие от силового центра (т.е. Душа в отличие от Материи) наделена качеством – в ней творится и исчезает Эфир.

Понятие вещество можно считать синонимом используемого физикой понятия материя. Вещество – это, в буквальном смысле, то, из чего состоят вещи, окружающие человека, – т.е. химические элементы и их соединения. А химические элементы, как уже указывалось, состоят из элементарных частиц.

Для вещества и материи в науке существуют понятия-антонимы – антивещество и антиматерия , которые являются друг по отношению к другу синонимами.

Ученые признают существование антивещества. Однако то, что они принимают за антивещество, в реальности таковым не является. В действительности антивещество всегда было под рукой у науки и было косвенно открыто уже давным-давно, с тех пор как начали проводить опыты по электромагнетизму. А проявления его существования мы постоянно можем ощущать в окружающем нас мире. Антивещество возникло во Вселенной вместе с веществом в тот самый момент, когда проявились элементарные частицы (Души). Вещество – это частицы Инь (т.е. частицы с Полями Притяжения). Антивещество (антиматерия) – это частицы Ян (частицы с Полями Отталкивания).

Свойства частиц Инь и Ян прямо противоположны, в связи с чем они прекрасно подходят на роль искомых вещества и антивещества.

Эфир, заполняющий элементарные частицы – их движущий фактор

«Силовой центр элементарной частицы всегда стремится двигаться вместе с Эфиром, который в данный момент заполняет эту частицу (и ее формирует), в том же направлении и с той же скоростью ».

Эфир – движущий фактор элементарных частиц. Если Эфир, который заполняет частицу, покоится, то покоиться будет и сама частица. А если Эфир частицы движется, двигаться будет и частица.

Таким образом, из-за того, что не существует разницы между Эфиром эфирного поля Вселенной и Эфиром частиц, все Принципы поведения Эфира применимы и к элементарным частицам. Если Эфир, который принадлежит частице, в данный момент движется в сторону возникновения недостатка Эфира (в соответствии с первым принципом поведения Эфира – «В эфирном поле не возникает эфирных пустот») либо отдаляется от избытка (в соответствии со вторым принципом поведения Эфира – «В эфирном поле не возникает областей с избыточной плотностью эфира»), частица будет двигаться вместе с ним в том же направлении и с той же скоростью.

Что такое Сила? Классификация Сил

Одной из основополагающих величин в физике в целом, и особенно в одном из ее подразделов – в механике, является Сила . Но что это такое, как ее охарактеризовать и подкрепить чем-то существующим в реальности?

Для начала откроем любой Физический Энциклопедический Словарь и прочтем определение.

«Сила в механике – мера механического действия на данное материальное тело других тел» (ФЭС, «Сила», под ред. А. М. Прохорова).

Как вы видите, Сила в современной физике не несет информации о чем-то конкретном, вещественном. Но при этом проявления Силы более чем конкретны. Для того чтобы исправить ситуацию, нам необходимо взглянуть на Силу с позиции оккультизма.

С эзотерической точки зрения Сила – это не что иное, как Дух, Эфир, Энергия. А Душа, как вы помните, это тоже Дух, только «свитый кольцом». Таким образом, и свободный Дух – это Сила, и Душа (запертый Дух) – это Сила. Эта информация очень поможет нам в дальнейшем.

Несмотря на некоторую размытость определения Силы, она имеет под собой вполне вещественную основу. Это вовсе не абстрактное понятие, каким оно предстает в физике в настоящее время.

Сила – это причина, заставляющая Эфир приближаться к его недостатку или отдаляться от его избытка. Нас интересует Эфир, заключенный в Элементарных частицах (Душах), поэтому для нас Сила – это, прежде всего, причина, побуждающая частицы к движению. Любая элементарная частица – это Сила, поскольку она прямо или косвенно воздействует на другие частицы.

Измерить Силу можно при помощи скорости , с которой Эфир частицы двигался бы под влиянием этой Силы, не действуй на частицу никакие другие Силы. Т.е. скорость эфирного потока, заставляющего частицу двигаться, это и есть величина этой Силы.

Давайте классифицируем все типы Сил, возникающих в частицах, в зависимости от причины, которая их вызывает.

Сила Притяжения (Стремление Притяжения).

Причиной возникновения этой Силы служит любой недостаток Эфира, возникающий где-либо в эфирном поле Вселенной.

Т.е. причиной возникновения в частице Силы Притяжения служит любая другая частица, поглощающая Эфир, – т.е. формирующая Поле Притяжения.

Сила Отталкивания (Стремление Отталкивания).

Причиной возникновения этой Силы является любой избыток Эфира, возникающий где-либо в эфирном поле Вселенной.

Исходя из наблюдений за взаимодейст-вием электрически заряженных тел, амери-канский физик Бенджамин Франклин назвал одни тела заряженными положительно, а другие — отрицательно. Соответственно этому и электрические заряды называют поло-жительными и отрицательными .

Тела с одноименными зарядами отталки-ваются. Тела с разноименными зарядами притяги-ваются.

Эти названия зарядов вполне условные, и единственное их значение состоит в том, что тела, имеющие электрические заряды, могут либо притягиваться, либо отталки-ваться.

Знак электрического заряда тела опре-деляют по взаимодействию с условным эта-лоном знака заряда.

В качестве одного из таких эталонов взят заряд эбонитовой палочки, потертой мехом. Считается, что эбонитовая палочка после натирания мехом всегда имеет отрицатель-ныйзаряд.

В случае если необходимо определить, какой знак заряда данного тела, его под-носят к закрепленной в легком подвесе эбонитовой палочке, потертой мехом, и наблюдают взаимодействие. Если палочка отталкивается, то тело имеет отрицатель-ный заряд.

После открытия и изучения элементар-ных частичек выяснилось, что отрицатель-ный заряд всегда имеет элементарная части-ца — электрон.

Электрон (от греч. — янтарь) — стабильная элементарная части-ца с отрицательным электриче-ским зарядом e = 1,6021892(46) . 10 -19 Кл, массой покоя m e = 9,1095 . 10 -19 кг. Открыт в 1897 г. английским физиком Дж. Дж. Томсоном.

Как эталон положительного заряда взят заряд стеклянной палочки, потертой нату-ральным шелком. Если палочка отталки-вается от наэлектризованного тела, то это тело имеет положительный заряд.

Положительный заряд всегда имеет про-тон, который входит в состав атомного яд-ра. Материал с сайта

Пользуясь вышеизложенными правила-ми для определения знака заряда тела, нужно помнить, что он зависит от вещества взаимодействующих тел. Так, эбонитовая па-лочка может иметь положительный заряд, если ее потереть тканью из синтетических материалов. Стеклянная палочка будет иметь отрицательный заряд, если ее потереть ме-хом. Поэтому, планируя получить отрица-тельный заряд на эбонитовой палочке, сле-дует обязательно пользоваться при натира-нии мехом или шерстяной тканью. Это же касается и электризации стеклянной палоч-ки, которую для получения положительного заряда натирают тканью из натурального шелка. Лишь электрон и протон всегда и однозначно имеют отрицательный и поло-жительный заряды соответственно.

На этой странице материал по темам:

  • Что являкться условным эталоном отрицательного заряда?

  • Что является условным эталоном отрицательного заряда

  • Что является условным эталоном положительного заряда?

  • То являеться условным эталоеом отпицательного заряда

  • Происходящие в природе физические процессы не всегда объясняются действием законов молекулярно-кинетической теории, механики либо термодинамики. Существуют еще электромагнитные силы, которые действуют на расстоянии и не зависят от массы тела.

    Их проявления впервые описаны в трудах древних ученых Греции, когда они янтарем, потертым о шерсть, притягивали легкие, маленькие частицы отдельных веществ.

    Исторический вклад ученых в развитие электродинамики

    Опыты с янтарем подробно изучались английским исследователем Уильямом Гильбертом . В последних годах XVI века он сделал отчет о своей работе, а предметы, способные притягивать другие тела на расстоянии, обозначил термином «наэлектризованные».

    Французским физиком Шарлем Дюфе было определено существование зарядов с противоположными знаками: одни образовывались при трении стеклянных предметов о шелковую ткань, а другие - смол по шерсти. Он так и назвал их: стеклянные и смоляные. После завершения исследований Бенджамина Франклина было введено понятие отрицательных и положительных зарядов.

    Шарль Кулон реализовал возможность измерения силы зарядов конструкцией крутильных весов собственного изобретения.

    Роберт Милликен на основе серии проведенных опытов установил дискретный характер электрических зарядов любого вещества, доказав, что они состоят из определенного количества элементарных частиц. (Не путать с другим понятием этого термина - дробности, прерывистости.)

    Труды перечисленных ученых послужили фундаментом современных знаний о процессах и явлениях, происходящих в электрических и магнитных полях, создаваемых электрическими зарядами и их движением, изучаемых электродинамикой.

    Определение зарядов и принципы их взаимодействия

    Электрическим зарядом характеризуют свойства веществ, обеспечивающих им возможность создавать электрические поля и взаимодействовать в электромагнитных процессах. Еще его называют количеством электричества и определяют как физическую скалярную величину. Для обозначения заряда приняты символы «q» или «Q», а при измерениях используют единицу «Кулон», названную в честь французского ученого, разработавшего уникальную методику.

    Им был создан прибор, в корпусе которого использовались подвешенные на тонкой нити из кварца шарики. Они ориентировались в пространстве определенным образом, а их положение регистрировалось относительно проградуированной шкалы с равными делениями.

    Через специальное отверстие в крышке к этим шарикам подводился другой шар, обладающий дополнительным зарядом. Возникающие силы взаимодействия заставляли отклоняться шарики, поворачивали их коромысло. Величина разницы отсчетов на шкале до ввода заряда и после него позволяла оценивать количество электричества в испытуемых образцах.

    Заряд в 1 кулон характеризуется в системе СИ силой тока в 1 ампер, проходящей через поперечное сечение проводника за время, равное 1 секунде.

    Все электрические заряды современная электродинамика разделяет на:

      положительные;

      отрицательные.

    При взаимодействии их между собой у них возникают силы, направление которых зависит от существующей полярности.


    Одинакового типа заряды, положительные либо отрицательные, всегда отталкиваются в противоположные стороны, стремясь, как можно дальше удалиться друг от друга. А у зарядов противоположных знаков действуют силы, стремящиеся сблизить их и соединить в одно целое.

    Принцип суперпозиции

    Когда в определенном объеме находится несколько зарядов, то для них действует принцип суперпозиции.


    Его смысл в том, что каждый заряд определенным образом по рассмотренному выше способу взаимодействует со всеми остальными, притягиваясь к разноименным и отталкиваясь от однотипных. К примеру, на положительный заряд q1 действует сила притяжения F31 к отрицательному заряду q3 и отталкивания F21 - от q2.

    Результирующая сила F1, действующая на q1, определяется геометрическим сложением векторов F31 и F21. (F1= F31+ F21).

    Таким же методом определяются действующие результирующие силы F2 и F3 на заряды q2 и q3 соответственно.

    Посредством принципа суперпозиции сделан вывод о том, что при определенном количестве зарядов в замкнутой системе между всеми ее телами действуют установившиеся электростатические силы, а потенциал в любой определенной точке этого пространства равен сумме потенциалов от всех отдельно приложенных зарядов.

    Действие этих законов подтверждают созданные приборы электроскоп и электрометр , имеющие общий принцип работы.


    Электроскоп состоит из двух одинаковых лепестков тонкой фольги, подвешенных в изолированном пространстве на токопроводящей нити, присоединенной к металлическому шарику. В обычном состоянии на этот шарик заряды не действуют, поэтому лепестки свободно висят в пространстве внутри колбы прибора.

    Как можно передавать заряд между телами

    Если к шарику электроскопа поднести заряженное тело, например, палочку, то заряд пройдет через шарик по токопроводящей нити к лепесткам. Они получат одноименный заряд и станут отодвигаться друг от друга на угол, пропорциональный приложенному количеству электричества.

    У электрометра такое же принципиальное устройство, но он имеет небольшие отличия: один лепесток закреплен стационарно, а второй отходит от него и снабжен стрелкой, которая позволяет снимать отсчет с проградуированной шкалы.

    Для переноса заряда от удаленного стационарно закрепленного и заряженного тела на электрометр можно воспользоваться промежуточными носителями.


    Измерения, сделанные электрометром, не обладают высоким классом точности и на их основе сложно анализировать силы, действующие между зарядами. Для их исследования больше приспособлены крутильные весы Кулона. У них использованы шарики с диаметрами, значительно меньшими, чем их удаление друг от друга. Они обладают свойствами точечных зарядов - заряженных тел, размеры которых не влияют на точность прибора.

    Измерения, выполненные Кулоном, подтвердили его догадку о том, что точечный заряд передается от заряженного тела к такому же по свойствам и массе, но незаряженному таким образом, чтобы равномерно распределиться между ними, уменьшаясь на источнике в 2 раза. Таким способом удалось уменьшать величину заряда в два, три и иное количество раз.

    Силы, существующие между неподвижными электрическими зарядами, называют кулоновским либо статическим взаимодействием. Их изучает электростатика, являющаяся одним из разделов электродинамики.

    Виды носителей электрических зарядов

    Современная наука считает самой маленькой отрицательно заряженной частицей электрон , а положительной - позитрон . Они имеют одинаковую массу 9,1·10-31 кг. Элементарная частица протон обладает всего одним положительным зарядом и массой 1,7·10-27 кг. В природе количество положительных и отрицательных зарядов уравновешено.

    В металлах движение электронов создает , а в полупроводниках носителями его зарядов являются электроны и дырки.

    В газах ток образуется передвижением ионов - заряженных неэлементарных частиц (атомов или молекул) с положительными зарядами, называемыми катионами либо отрицательными - анионами.

    Ионы образуются из нейтральных частиц.


    Положительный заряд создается у частицы, потерявшей электрон под действием мощного электрического разряда, светового или радиоактивного облучения, потока ветра, движения масс воды или ряда других причин.

    Отрицательные ионы образуются из нейтральных частиц, дополнительно получивших электрон.

    Использование ионизации в медицинских целях и быту

    Исследователи давно заметили способность отрицательных ионов воздействовать на организм человека, улучшать потребление кислорода воздуха, быстрее доставлять его к тканям и клеткам, ускорять процесс окисления серотонина. Это все в комплексе значительно повышает иммунитет, улучшает настроение, снимает боли.

    Первый ионизатор, используемый для лечения людей, получил название люстры Чижевского , в честь советского ученого, который создал прибор, благотворно влияющий на здоровье человека.

    В современных электроприборах для работы в бытовых условиях можно встретить встроенные ионизаторы в пылесосы, увлажнители воздуха, фены, сушилки…

    Специальные ионизаторы воздуха очищают его состав, уменьшают количество пыли и вредных примесей.

    Ионизаторы воды способны снижать количество химических реагентов в ее составе. Их используют для очистки бассейнов и водоемов, насыщая воду ионами меди или серебра, которые уменьшают рост водорослей, уничтожают вирусы и бактерии.

    «Физика - 10 класс»

    Вначале рассмотрим наиболее простой случай, когда электрически заряженные тела находятся в покое.

    Раздел электродинамики, посвящённый изучению условий равновесия электрически заряженных тел, называют электростатикой .

    Что такое электрический заряд?
    Какие существуют заряды?

    Со словами электричество, электрический заряд, электрический ток вы встречались много раз и успели к ним привыкнуть. Но попробуйте ответить на вопрос: «Что такое электрический заряд?» Само понятие заряд - это основное, первичное понятие, которое не сводится на современном уровне развития наших знаний к каким-либо более простым, элементарным понятиям.

    Попытаемся сначала выяснить, что понимают под утверждением: «Данное тело или частица имеет электрический заряд».

    Все тела построены из мельчайших частиц, которые неделимы на более простые и поэтому называются элементарными .

    Элементарные частицы имеют массу и благодаря этому притягиваются друг к другу согласно закону всемирного тяготения. С увеличением расстояния между частицами сила тяготения убывает обратно пропорционально квадрату этого расстояния. Большинство элементарных частиц, хотя и не все, кроме того, обладают способностью взаимодействовать друг с другом с силой, которая также убывает обратно пропорционально квадрату расстояния, но эта сила во много раз превосходит силу тяготения.

    Так в атоме водорода, изображённом схематически на рисунке 14.1, электрон притягивается к ядру (протону) с силой, в 10 39 раз превышающей силу гравитационного притяжения.

    Если частицы взаимодействуют друг с другом с силами, которые убывают с увеличением расстояния так же, как и силы всемирного тяготения, но превышают силы тяготения во много раз, то говорят, что эти частицы имеют электрический заряд. Сами частицы называются заряженными .

    Бывают частицы без электрического заряда, но не существует электрического заряда без частицы.

    Взаимодействие заряженных частиц называется электромагнитным .

    Электрический заряд определяет интенсивность электромагнитных взаимодействий, подобно тому как масса определяет интенсивность гравитационных взаимодействий.

    Электрический заряд элементарной частицы - это не особый механизм в частице, который можно было бы снять с неё, разложить на составные части и снова собрать. Наличие электрического заряда у электрона и других частиц означает лишь существование определённых силовых взаимодействий между ними.

    Мы, в сущности, ничего не знаем о заряде, если не знаем законов этих взаимодействий. Знание законов взаимодействий должно входить в наши представления о заряде. Эти законы непросты, и изложить их в нескольких словах невозможно. Поэтому нельзя дать достаточно удовлетворительное краткое определение понятию электрический заряд .


    Два знака электрических зарядов.


    Все тела обладают массой и поэтому притягиваются друг к другу. Заряженные же тела могут как притягивать, так и отталкивать друг друга. Этот важнейший факт, знакомый вам, означает, что в природе есть частицы с электрическими зарядами противоположных знаков; в случае зарядов одинаковых знаков частицы отталкиваются, а в случае разных притягиваются.

    Заряд элементарных частиц - протонов , входящих в состав всех атомных ядер, называют положительным, а заряд электронов - отрицательным. Между положительными и отрицательными зарядами внутренних различий нет. Если бы знаки зарядов частиц поменялись местами, то от этого характер электромагнитных взаимодействий нисколько бы не изменился.


    Элементарный заряд.


    Кроме электронов и протонов, есть ещё несколько типов заряженных элементарных частиц. Но только электроны и протоны могут неограниченно долго существовать в свободном состоянии. Остальные же заряженные частицы живут менее миллионных долей секунды. Они рождаются при столкновениях быстрых элементарных частиц и, просуществовав ничтожно малое время, распадаются, превращаясь в другие частицы. С этими частицами вы познакомитесь в 11 классе.

    К частицам, не имеющим электрического заряда, относится нейтрон . Его масса лишь незначительно превышает массу протона. Нейтроны вместе с протонами входят в состав атомного ядра. Если элементарная частица имеет заряд, то его значение строго определено.

    Заряженные тела Электромагнитные силы в природе играют огромную роль благодаря тому, что в состав всех тел входят электрически заряженные частицы. Составные части атомов - ядра и электроны - обладают электрическим зарядом.

    Непосредственно действие электромагнитных сил между телами не обнаруживается, так как тела в обычном состоянии электрически нейтральны.

    Атом любого вещества нейтрален, так как число электронов в нём равно числу протонов в ядре. Положительно и отрицательно заряженные частицы связаны друг с другом электрическими силами и образуют нейтральные системы.

    Макроскопическое тело заряжено электрически в том случае, если оно содержит избыточное количество элементарных частиц с каким-либо одним знаком заряда. Так, отрицательный заряд тела обусловлен избытком числа электронов по сравнению с числом протонов, а положительный - недостатком электронов.

    Для того чтобы получить электрически заряженное макроскопическое тело, т. е. наэлектризовать его, нужно отделить часть отрицательного заряда от связанного с ним положительного или перенести на нейтральное тело отрицательный заряд.

    Это можно сделать с помощью трения. Если провести расчёской по сухим волосам, то небольшая часть самых подвижных заряженных частиц - электронов перейдёт с волос на расчёску и зарядит её отрицательно, а волосы зарядятся положительно.


    Равенство зарядов при электризации


    С помощью опыта можно доказать, что при электризации трением оба тела приобретают заряды, противоположные по знаку, но одинаковые по модулю.

    Возьмём электрометр, на стержне которого укреплена металлическая сфера с отверстием, и две пластины на длинных рукоятках: одна из эбонита, а другая из плексигласа. При трении друг о друга пластины электризуются.

    Внесём одну из пластин внутрь сферы, не касаясь её стенок. Если пластина заряжена положительно, то часть электронов со стрелки и стержня электрометра притянется к пластине и соберётся на внутренней поверхности сферы. Стрелка при этом зарядится положительно и оттолкнётся от стержня электрометра (рис. 14.2, а).

    Если внести внутрь сферы другую пластину, вынув предварительно первую, то электроны сферы и стержня будут отталкиваться от пластины и соберутся в избытке на стрелке. Это вызовет отклонение стрелки от стержня, причём на тот же угол, что и в первом опыте.

    Опустив обе пластины внутрь сферы, мы вообще не обнаружим отклонения стрелки (рис. 14.2, б). Это доказывает, что заряды пластин равны по модулю и противоположны по знаку.

    Электризация тел и её проявления. Значительная электризация происходит при трении синтетических тканей. Снимая с себя рубашку из синтетического материала в сухом воздухе, можно слышать характерное потрескивание. Между заряженными участками трущихся поверхностей проскакивают маленькие искорки.

    В типографиях происходит электризация бумаги при печати, и листы слипаются. Чтобы это не происходило, применяют специальные устройства для стекания заряда. Однако электризация тел при тесном контакте иногда используется, например, в различных электрокопировальных установках и др.


    Закон сохранения электрического заряда.


    Опыт с электризацией пластин доказывает, что при электризации трением происходит перераспределение имеющихся зарядов между телами, до этого нейтральными. Небольшая часть электронов переходит с одного тела на другое. При этом новые частицы не возникают, а существовавшие ранее не исчезают.

    При электризации тел выполняется закон сохранения электрического заряда . Этот закон справедлив для системы, в которую не входят извне и из которой не выходят наружу заряженные частицы, т. е. для изолированной системы .

    В изолированной системе алгебраическая сумма зарядов всех тел сохраняется.

    q 1 + q 2 + q 3 + ... + q n = const. (14.1)

    где q 1 , q 2 и т. д. - заряды отдельных заряженных тел.

    Закон сохранения заряда имеет глубокий смысл. Если число заряженных элементарных частиц не меняется, то выполнение закона сохранения заряда очевидно. Но элементарные частицы могут превращаться друг в друга, рождаться и исчезать, давая жизнь новым частицам.

    Однако во всех случаях заряженные частицы рождаются только парами с одинаковыми по модулю и противоположными по знаку зарядами; исчезают заряженные частицы тоже только парами, превращаясь в нейтральные. И во всех этих случаях алгебраическая сумма зарядов остаётся одной и той же.

    Справедливость закона сохранения заряда подтверждают наблюдения над огромным числом превращений элементарных частиц. Этот закон выражает одно из самых фундаментальных свойств электрического заряда. Причина сохранения заряда до сих пор неизвестна.

    Подобно понятию гравитационной массы тела в механике Ньютона, понятие заряда в электродинамике является первичным, основным понятием.

    Электрический заряд - это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия.

    Электрический заряд обычно обозначается буквами q или Q .

    Совокупность всех известных экспериментальных фактов позволяет сделать следующие выводы:

    Существует два рода электрических зарядов, условно названных положительными и отрицательными.

    Заряды могут передаваться (например, при непосредственном контакте) от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд.

    Одноименные заряды отталкиваются, разноименные - притягиваются. В этом также проявляется принципиальное отличие электромагнитных сил от гравитационных. Гравитационные силы всегда являются силами притяжения.

    Одним из фундаментальных законов природы является экспериментально установленный закон сохранения электрического заряда .

    В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

    q 1 + q 2 + q 3 + ... +q n = const.

    Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака.

    С современной точки зрения, носителями зарядов являются элементарные частицы. Все обычные тела состоят из атомов, в состав которых входят положительно заряженные протоны, отрицательно заряженные электроны и нейтральные частицы - нейтроны. Протоны и нейтроны входят в состав атомных ядер, электроны образуют электронную оболочку атомов. Электрические заряды протона и электрона по модулю в точности одинаковы и равны элементарному заряду e .

    В нейтральном атоме число протонов в ядре равно числу электронов в оболочке. Это число называется атомным номером . Атом данного вещества может потерять один или несколько электронов или приобрести лишний электрон. В этих случаях нейтральный атом превращается в положительно или отрицательно заряженный ион.

    Заряд может передаваться от одного тела к другому только порциями, содержащими целое число элементарных зарядов. Таким образом, электрический заряд тела - дискретная величина:

    Физические величины, которые могут принимать только дискретный ряд значений, называются квантованными . Элементарный заряд e является квантом (наименьшей порцией) электрического заряда. Следует отметить, что в современной физике элементарных частиц предполагается существование так называемых кварков - частиц с дробным зарядом и Однако, в свободном состоянии кварки до сих пор наблюдать не удалось.

    В обычных лабораторных опытах для обнаружения и измерения электрических зарядов используется электрометр ( или электроскоп) - прибор, состоящий из металлического стержня и стрелки, которая может вращаться вокруг горизонтальной оси (рис. 1.1.1). Стержень со стрелкой изолирован от металлического корпуса. При соприкосновении заряженного тела со стержнем электрометра, электрические заряды одного знака распределяются по стержню и стрелке. Силы электрического отталкивания вызывают поворот стрелки на некоторый угол, по которому можно судить о заряде, переданном стержню электрометра.

    Электрометр является достаточно грубым прибором; он не позволяет исследовать силы взаимодействия зарядов. Впервые закон взаимодействия неподвижных зарядов был открыт французским физиком Шарлем Кулоном в 1785 г. В своих опытах Кулон измерял силы притяжения и отталкивания заряженных шариков с помощью сконструированного им прибора - крутильных весов (рис. 1.1.2), отличавшихся чрезвычайно высокой чувствительностью. Так, например, коромысло весов поворачивалось на 1° под действием силы порядка 10 -9 Н.

    Идея измерений основывалась на блестящей догадке Кулона о том, что если заряженный шарик привести в контакт с точно таким же незаряженным, то заряд первого разделится между ними поровну. Таким образом, был указан способ изменять заряд шарика в два, три и т. д. раз. В опытах Кулона измерялось взаимодействие между шариками, размеры которых много меньше расстояния между ними. Такие заряженные тела принято называть точечными зарядами .

    Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь.

    На основании многочисленных опытов Кулон установил следующий закон:

    Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними:

    Силы взаимодействия подчиняются третьему закону Ньютона:

    Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках (рис. 1.1.3). Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой .

    Закон Кулона справедлив для точечных заряженных тел. Практически закон Кулона хорошо выполняется, если размеры заряженных тел много меньше расстояния между ними.

    Коэффициент пропорциональности k в законе Кулона зависит от выбора системы единиц. В Международной системе СИ за единицу заряда принят кулон (Кл).

    Кулон - это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А. Единица силы тока (Ампер) в СИ является наряду с единицами длины, времени и массы основной единицей измерения .

    Коэффициент k в системе СИ обычно записывают в виде:

    Где - электрическая постоянная .

    В системе СИ элементарный заряд e равен:

    Опыт показывает, что силы кулоновского взаимодействия подчиняются принципу суперпозиции:

    Если заряженное тело взаимодействует одновременно с несколькими заряженными телами, то результирующая сила, действующая на данное тело, равна векторной сумме сил, действующих на это тело со стороны всех других заряженных тел.

    Рис. 1.1.4 поясняет принцип суперпозиции на примере электростатического взаимодействия трех заряженных тел.

    Принцип суперпозиции является фундаментальным законом природы. Однако, его применение требует определенной осторожности, в том случае, когда речь идет о взаимодействии заряженных тел конечных размеров (например, двух проводящих заряженных шаров 1 и 2). Если к системе из двух заряженных шаров поднсти третий заряженный шар, то взаимодействие между 1 и 2 изменится из-за перераспределения зарядов .

    Принцип суперпозиции утверждает, что при заданном (фиксированном) распределении зарядов на всех телах силы электростатического взаимодействия между любыми двумя телами не зависят от наличия других заряженных тел.



    Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ