Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Формулировка: Квадрат стороны треугольника равен сумме квадратов двух других его сторон минус удвоенное произведение этих сторон на косинус угла между ними.

Для произвольного треугольника ABC и его сторон a,b и с (противолежащих к соответствующим вершинам) это равенство можно записать и для двух других сторон:

Теорема косинусов используется для решения треугольников в двух главных ситуациях:

1) Когда даны две стороны и угол между ними, а требуется найти последнюю сторону:

2) Когда даны все три стороны треугольника, а требуется найти его углы:

Иногда репетитор по математике рекомендует использовать теорему косинусов в задаче с двумя данными сторонами и углом, не лежащим между ними. В этом случае а) придется решать квадратное уравнение и отбирать среди полученных корней длину реальной стороны. б) такая ситуация не характерна для задач с ЕГЭ по математике, так как не всегда однозначно задает треугольник. Если угол не лежит между сторонами, то циркулем и линейкой можно построить двух разных треугольника с такими элементами.

Теорема косинусов иногда называют расширенной теоремой Пифагора или обобщением теоремы Пифагора, ибо при угле 90 градусов из указанных выше равенств получается . Как любое обобщение она намного универсальнее и эффективнее частного случая и применяется к большему числу реальных ситуаций (в отличае от искусственных задач ГИА и ЕГЭ по математике, расчитанных на программу 8 класса).

Все известные мне доказательства связаны с векторами и координатами. В учебнике Атанасяна оно проводится через координаты точек, а в учебнике Погорелове используется понятие «скалярное произведение векторов». Проведем доказательство по Атанасяну. Оно, как мне кажется больше всего подходит репетитору по математике для работы, так как имеет меньшую зависимость от соседних тем.

Докажем равенство для стороны а и угла А . Для этого введем систему координат как показано на рисунке (ось Ох направляется вдоль стороны АС). Точка B при этом получит координаты B (cCosA;cSinA). Это единственный сложный для слабого или среднего ученика факт, который репетитор по математике , работающий по учебнику Атанасяна, должен отдельно рассмотреть. Cложным он является часто по причине того, что не подкреплен в программе достаточным количеством задач и после изучения теоремы косинусов не используется. В случае с данным расположеним точек (когда — острый) репетитору по математике достаточно обратиться к определению косинуса и синуса острого угла в прямоугольных треугольниках с пунктирными сторонами.

Даленейшее доказательство строится на алгебраических и тригонометрических выкладках. К ним необходимо добавить знание формулы расстояния между двумя точками .

Применяем формулу сокращенного усножения к квадрату суммы:

Выносим за скобку: . Используем основное тригонометрическое тождество и получаем

и в итоге

Любознательному ученику репетитор по математике может показать редкое доказательство теоермы косинусов. Проведем в треугольнике ABC высоту BH и запишем АВ=АН+НВ или с=bCosA+aCosB. Если угол B — тупой, то АВ=АН-НВ и с учетом того, что косинусы смежных углов противоположны, снова получим равенство с=bCosA+aCosB. Поэтому оно не зависит от вида треугольника. запишем аналогичные формулы для а и b:
a=cCosB+bCosC и b=aCosC+cCosA. Умножая их соответственно на а и b и вычитая из их суммы равнство с=bCosA+aCosB получим равенсто

Торема косинусов позволяет объяснить весьма полезное на практике свойство диагоналей параллелограмма: сумма квадратов диагоналей параллелограмма равна сумме квадратов длин его сторон. Для того, чтобы в этом убедиться достаточно записать теорему косинусов для каждой диагонали и сложить полученные равенства.

Примеры задач, в которых так или иначе можно (или нужно) использовать теорему косинусов:

1) В треугольнике со сторонами 2,3 и 4 найдите длину медианы, проведенную к большей стороне.
2) В том же треугольнике найдите длину биссектрисы, проведенной к большей стороне.
3) В треугольнике АВС отрезок, соединяющий середины АВ и ВС, равен 3 дм, а сторона АВ равна 7дм, угол С равен . Найдите ВС.
4) Центр окружности, вписанной в прямоугольный треугольник АВС с прямым углом С находится на расстоянии и от вершин А и В. Надите катеты треугольника.

Полноценная подготовка к ЕГЭ по математике невозможна без решения задач на теорему косинусов. В варианте ЕГЭ она может встретится или в номере B4 или в C4. Постепенно я буду переносить на страницу интересные задачи С4 из моей дидактической базы и с пробных экзаменов. Репетиторы, не забудьте, что в ГИА, как на ЕГЭ, теорема косинусов может проявиться и в первой и во второй части варианта.

Колпаков Александр Николаевич,
репетитор по математике в Москве . Подготовка к ЕГЭ

Важные замечания!
1. Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь:
2. Прежде чем на начнешь читать статью, обрати внимание на наш навигатор по самым полезным ресурса для

Что же такое теорема косинусов? Представь себе, это такая… теорема Пифагора для произвольного треугольника.

Теорема косинусов: формулировка.

Теорема косинусов гласит: квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

А теперь объясняю почему так и причем тут теорема Пифагор.

Ведь что утверждает теорема Пифагора?

А что будет, если, скажем, острый?

А если - тупой?

Вот сейчас и выясним, точнее, сперва сформулируем, а потом докажем.

Итак, для всякого (и остроугольного, и тупоугольного и даже прямоугольного!) треугольника верна теорема косинусов.

Теорема косинусов:

Что такое и?

можно выразить из треугольника (прямоугольного!) .

А вот (снова из).

Подставляем:

Раскрываем:

Пользуемся тем, что и… всё!

2 Случай: пусть.

Итак, то есть тупой.

А теперь, внимание, отличие!

Это из, который теперь оказался снаружи, а

Вспоминаем, что

(читай тему , если совсем забыл, почему так).

Значит, - и все! Отличие закончилось!

Как и было, то есть:

Ну и остался последний случай.

3 Случай: пусть.

Итак, . Но тогда и теорема косинусов просто превращается в теорему Пифагора:

В каких же задачах бывает полезна теорема косинусов?

Ну, например, если у тебя даны две стороны треугольника и угол между ними , то ты прямо сразу можешь найти третью сторону .

Или, если тебе даны все три стороны , то ты тут же найдешь косинус любого угла по формуле

И даже, если тебе даны две стороны и угол НЕ между ними , то третью сторону тоже можно найти, решая квадратное уравнение. Правда, в этом случае получается иногда два ответа и нужно соображать, какой же из них выбрать, или оставить оба.

Попробуй применять и не бояться - теорема косинусов почти также легка в обращении, как и теорема Пифагора.

ТЕОРЕМА КОСИНУСОВ. КОРОТКО О ГЛАВНОМ

Теорема косинусов: квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 499 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Каждый из нас много часов просидел над решением той или иной задачи по геометрии. Конечно, возникает вопрос, зачем вообще нужно учить математику? Вопрос особо актуален для геометрии, знания которой если и пригождаются, то очень редко. Но у математики есть назначение и для тех, кто не собирается становиться работником Она заставляет человека работать и развиваться.

Первоначальным назначением математики было не наделение учеников знаниями о предмете. Учителя ставили себе целью научить детей мыслить, рассуждать, анализировать и аргументировать. Именно это мы и находим в геометрии с ее многочисленными аксиомами и теоремами, следствиями и доказательствами.

Теорема косинусов

Использование

Кроме уроков по математике и физике, данная теорема широко используется в архитектуре и строительстве, для вычисления необходимых сторон и углов. С ее помощью определяют необходимые размеры постройки и количество материалов, которые потребуются для ее возведения. Конечно, большинство процессов, которые ранее требовали непосредственного человеческого участия и знаний, автоматизированы на сегодняшний день. Существует огромное количество программ, которые позволяют моделировать подобные проекты на компьютере. Их программирование также осуществляется с учетом всех математических законов, свойств и формул.

Не все школьники, а тем более взрослые, знают, что теорема косинусов напрямую связана с теоремой Пифагора. Точнее сказать, последняя является частным случаем первой. Этот момент, а также два способа доказательства теоремы косинусов помогут стать более знающим человеком. К тому же практика в выражении величин из исходных выражений хорошо развивает логическое мышление. Длинная формула изучаемой теоремы обязательно заставит потрудиться и посовершенствоваться.

Начало разговора: введение обозначений

Эта теорема формулируется и доказывается для произвольного треугольника. Поэтому ею можно воспользоваться всегда, в любой ситуации, если даны две стороны, а в некоторых случаях три, и угол, причем необязательно между ними. Каким бы ни был вид треугольника, теорема сработает всегда.

А теперь про обозначение величин во всех выражениях. Лучше сразу договориться, чтобы потом несколько раз не пояснять. Для этого составлена следующая таблица.

Формулировка и математическая запись

Итак, формулируется теорема косинусов следующим образом:

Квадрат стороны любого треугольника равен сумме квадратов двух других его сторон минус удвоенное произведение этих же сторон на косинус угла, лежащего между ними.

Конечно, оно длинное, но если понять его суть, то запомнить будет просто. Можно даже представлять себе чертеж треугольника. Наглядно всегда проще запоминать.

Формула же этой теоремы будет выглядеть так:

Немного длинно, но все логично. Если немного внимательнее посмотреть, то можно увидеть, что буквы повторяются, значит, и запомнить ее несложно.

Распространенное доказательство теоремы

Поскольку она справедлива для всех треугольников, то можно выбрать для рассуждений любой из видов. Пусть это будет фигура со всеми острыми углами. Рассмотрим произвольный остроугольный треугольник, у которого угол С больше, чем угол В. Из вершины с этим большим углом нужно опустить перпендикуляр на противоположную сторону. Проведенная высота разделит треугольник на два прямоугольных. Это потребуется для доказательства.

Сторона окажется разделенной на два отрезка: х, у. Их нужно выразить через известные величины. Та часть, которая окажется в треугольнике с гипотенузой, равной в, выразится через запись:

х = в * cos А.

Другая будет равна такой разности:

у = с - в * cos А.

Теперь нужно записать теорему Пифагора для двух получившихся в результате построения прямоугольных треугольников, принимая за неизвестную величину высоту. Эти формулы будут выглядеть так:

н 2 = в 2 - (в * cos А) 2 ,

н 2 = а 2 - (с - в * cos А) 2 .

В этих равенствах стоят одинаковые выражения слева. Значит, их правые части тоже будут равны. Это просто записать. Теперь нужно раскрыть скобки:

в 2 - в 2 * (cos А) 2 = а 2 - с 2 + 2 с * в * cos А - в 2 * (cos А) 2 .

Если здесь выполнить перенос и приведение подобных слагаемых, то получится начальная формула, которая записана после формулировки, то есть теорема косинусов. Доказательство закончено.

Доказательство теоремы через векторы

Оно гораздо короче предыдущего. И если знать свойства векторов, то теорема косинусов для треугольника будет доказана просто.

Если стороны а, в, с обозначить соответственно векторами ВС, АС и АВ, то справедливо равенство:

ВС = АС - АВ.

Теперь нужно выполнить некоторые действия. Первое из них — это возведение в квадрат обеих частей равенства:

ВС 2 = АС 2 + АВ 2 - 2 АС * АВ.

Потом равенство нужно переписать в скалярном виде, учитывая то, что произведение векторов равно косинусу угла между ними на их скалярные значения:

ВС 2 = АС 2 + АВ 2 - 2 АС * АВ * cos А.

Осталось только вернуться к старым обозначениям, и снова получится теорема косинусов:

а 2 = в 2 + с 2 - 2 * в * с * cos А.

Формулы для других сторон и всех углов

Чтобы найти сторону, из теоремы косинусов нужно извлечь квадратный корень. Формула для квадратов одной из других сторон будет выглядеть так:

с 2 = а 2 + в 2 - 2 * а * в * cos C.

Чтобы записать выражение для квадрата стороны в , нужно в предыдущем равенстве заменить с на в , и наоборот, и под косинусом поставить угол В.

Из основной формулы теоремы можно выразить значение косинуса угла А:

cos А = (в 2 + с 2 - а 2) / (2 в * с).

Аналогично выводятся формулы для других углов. Это хорошая практика, поэтому можно попробовать написать их самостоятельно.

Естественно, что запоминать эти формулы нет необходимости. Достаточно понимания теоремы и умения вывести эти выражения из ее основной записи.

Исходная формула теоремы дает возможность найти сторону, если угол лежит не между двумя известными. К примеру, нужно найти в , когда даны величины: а, с, А . Или неизвестна с , зато есть значения а, в, А .

В этой ситуации нужно перенести все слагаемые формулы в левую сторону. Получится такое равенство:

с 2 - 2 * в * с * cos А + в 2 - а 2 = 0.

Перепишем его немного в другом виде:

с 2 - (2 * в * cos А) * с + (в 2 - а 2) = 0.

Можно легко увидеть квадратное уравнение. В нем неизвестная величина - с , а все остальные даны. Поэтому его достаточно решить с помощью дискриминанта. Так будет найдена неизвестная сторона.

Аналогично получается формула для второй стороны:

в 2 - (2 * с * cos А) * в + (с 2 - а 2) = 0.

Из других выражений такие формулы тоже легко получить самостоятельно.

Как без вычисления косинуса узнать вид угла?

Если внимательно посмотреть на формулу косинуса угла, выведенную ранее, то можно заметить следующее:

  • знаменатель дроби - всегда положительное число, потому что в нем стоит произведение сторон, которые не могут быть отрицательными;
  • значение угла будет зависеть от знака числителя.

Угол А будет:

  • острым в ситуации, когда числитель больше нуля;
  • тупым, если это выражение отрицательное;
  • прямым при его равенстве нулю.

Кстати, последняя ситуация обращает теорему косинусов в теорему Пифагора. Потому что для угла в 90º его косинус равен нулю, и последнее слагаемое исчезает.

Первая задача

Условие

Тупой угол некоторого произвольного треугольника равен 120º. О сторонах, которыми он ограничен, известно, что одна из них больше другой на 8 см. Известна длина третьей стороны, это 28 см. Требуется найти периметр треугольника.

Решение

Сначала нужно обозначить одну из сторон буквой «х». В таком случае другая будет равна (х + 8). Поскольку есть выражения для всех трех сторон, можно воспользоваться формулой, которую дает теорема косинусов:

28 2 = (х + 8) 2 + х 2 - 2 * (х + 8) * х * cos 120º.

В таблицах для косинусов нужно найти значение, соответствующее 120 градусам. Это будет число 0,5 со знаком минус. Теперь полагается раскрыть скобки, соблюдая все правила, и привести подобные слагаемые:

784 = х 2 + 16х + 64 + х 2 - 2х * (-0,5) * (х + 8);

784 = 2х 2 + 16х + 64 + х 2 + 8х;

3х 2 + 24х - 720 = 0.

Это квадратное уравнение решается через нахождение дискриминанта, который будет равен:

Д = 24 2 - 4 * 3 * (- 720) = 9216.

Поскольку его значение больше нуля, то уравнение имеет два ответа-корня.

х 1 = ((-24) + √(9216)) / (2 * 3) = 12;

х 2 = ((-24) - √(9216)) / (2 * 3) = -20.

Последний корень не может быть ответом задачи, потому что сторона обязательно должна быть положительной.

При решении задач по геометрии из ЕГЭ и ОГЭ по математике довольно часто возникает необходимость, зная две стороны треугольника и угол между ними, найти третью сторону. Или же, зная все стороны треугольника, найти его углы. Для решение этих задач вам потребуется значение теоремы косинусов для треугольника. В данной статье репетитор по математике и физике рассказывает о том, как формулируется, доказывается и применяется на практике при решении задач данная теорема.

Формулировка теоремы косинусов для треугольника

Теорема косинусов для треугольника связывает две стороны треугольника и угол между ними со стороной, лежащей против этого угла. К примеру, обозначим буквами , и длины сторон треугольника ABC , лежащие соответственно против углов A , B и C .

Тогда имеет теорема косинусов для этого треугольника может быть записана в виде:

На рисунке для удобства дальнейших рассуждений угол С обозначен углом . Словами это можно сформулировать следующим образом: «Квадрат любой стороны треугольника равен сумме квадратов двух других сторон за вычетом удвоенного произведения этих сторон на косинус угла между ними.»

Понятно, что если бы вы выражали другую сторону треугольника, например, сторону , то в формуле нужно было бы брать косинус угла A , то есть лежащего против искомой стороны в треугольнике, а справа в уравнении на своих местах стояли бы стороны и . Выражение для квадрата стороны получается аналогично:

Доказательство теоремы косинусов для треугольника

Доказательство теоремы косинусов для треугольника проводят обычно следующим образом. Разбивают исходный треугольник на два прямоугольных треугольника высотой, а дальше играются со сторонами полученных треугольников и теоремой Пифагора. В результате после долгих нудных преобразований получаю нужный результат. Мне лично этот подход не по душе. И не только из-за громоздких вычислений, но ещё и потому что в этом случае приходится отдельно рассматривать случай, когда треугольник является тупоугольным. Слишком много трудностей.

Я предлагаю доказать эту теорему с помощью понятия «скалярного произведения векторов». Я сознательно иду на этот риск для себя, зная, что многие школьники предпочитают обходить эту тему стороной, считая, что она какая-то мутная и с ней лучше не иметь дела. Но нежелание возиться отдельно с тупоугольным треугольником во мне всё же пересиливает. Тем более, что доказательство в результате получается удивительно простым и запоминающимся. Сейчас вы в этом убедитесь.

Заменим стороны нашего треугольника следующими векторами:

Используем теорему косинусов для треугольника ABC . Квадрат стороны равен сумме квадратов сторон и за вычетом удвоенного произведения этих сторон на косинус угла между ними:

Поскольку , то в результат получаем:

Значит, . Понятно, что отрицательное решение мы не берём, потому что длина отрезка — это число положительное.

Искомый угол на рисунке обозначен . Вновь запишем теорему косинусов для треугольника ABC . Поскольку все обозначения у нас сохранились, то и формула, выражающая теорему косинусов для этого треугольника, останется прежней:

Подставим теперь в эту формулу все величины, которые даны. В результате получаем следующее выражение:

После всех вычислений и преобразований получаем следующее простое выражение:

Какой должна быть величина острого угла , чтобы его косинус был равен Смотрим в таблицу, которую можно найти в , и получаем ответ: .

Вот так решаются задачи по геометрии с использованием теоремы косинусов для треугольника. Если вы собираетесь сдавать ОГЭ или ЕГЭ по математике, то этот материал вам нужно освоить обязательно. Соответствующие задачи почти наверняка будут на экзамене. Потренируйтесь самостоятельно в их решении. Выполните следующие задания:

  1. В треугольнике ABC сторона AB равна 4 см, сторона BC равна 6 см, угол B равен 30°. Найдите сторону AC .
  2. В треугольнике ABC сторона AB равна 10, сторона BC равна 8, сторона AC равна 9. Найдите косинус угла A .

Свои ответы и варианты решения пишите в комментариях. Удачи вам!

Материал подготовил , Сергей Валерьевич



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ