Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Следующим по важности свойством случайной величины вслед за математическим ожиданием является ее дисперсия, определяемая как средний квадрат отклонения от среднего:

Если обозначить через то дисперсия VX будет ожидаемым значением Это характеристика „разброса" распределения X.

В качестве простого примера вычисления дисперсии предположим, что нам только что сделали предложение, от которого мы не в силах отказаться: некто подарил нам два сертификата для участия в одной лотерее. Устроители лотереи продают каждую неделю по 100 билетов, участвующих в отдельном тираже. В тираже выбирается один их этих билетов посредством равномерного случайного процесса - каждый билет имеет равные шансы быть выбранным - и обладатель этого счастливого билета получает сто миллионов долларов. Остальные 99 владельцев лотерейных билетов не выигрывают ничего.

Мы можем использовать подарок двумя способами: купить или два билета в одной лотерее, или по одному для участия в двух разных лотереях. Какая стратегия лучше? Попытаемся провести анализ. Для этого обозначим через случайные величины, представляющие размер нашего выигрыша по первому и второму билету. Ожидаемое значение в миллионах, равно

и то же самое справедливо для Ожидаемые значения аддитивны, поэтому наш средний суммарный выигрыш составит

независимо от принятой стратегии.

Тем не менее, две стратегии выглядят различными. Выйдем за рамки ожидаемых значений и изучим полностью распределение вероятностей

Если мы купим два билета в одной лотерее, то наши шансы не выиграть ничего составят 98% и 2% - шансы на выигрыш 100 миллионов. Если же мы купим билеты на разные тиражи, то цифры будут такими: 98.01% - шанс не выиграть ничего, что несколько больше, чем ранее; 0.01% - шанс выиграть 200 миллионов, также чуть больше, чем было ранее; и шанс выиграть 100 миллионов теперь составляет 1.98%. Таким образом, во втором случае распределение величины несколько более разбросано; среднее значение, 100 миллионов долларов, несколько менее вероятно, тогда как крайние значения более вероятны.

Именно это понятие разброса случайной величины призвана отразить дисперсия. Мы измеряем разброс через квадрат отклонения случайной величины от ее математического ожидания. Таким образом, в случае 1 дисперсия составит

в случае 2 дисперсия равна

Как мы и ожидали, последняя величина несколько больше, поскольку распределение в случае 2 несколько более разбросано.

Когда мы работаем с дисперсиями, то все возводится в квадрат, так что в результате могут получиться весьма большие числа. (Множитель есть один триллион, это должно впечатлить

даже привычных к крупным ставкам игроков.) Для преобразования величин в более осмысленную исходную шкалу часто извлекают квадратный корень из дисперсии. Полученное число называется стандартным отклонением и обычно обозначается греческой буквой а:

Стандартные отклонения величины для наших двух лотерейных стратегий составят . В некотором смысле второй вариант примерно на 71247 долларов рискованнее.

Каким образом дисперсия помогает в выборе стратегии? Это не ясно. Стратегия с большей дисперсией рискованнее; но что лучше для нашего кошелька - риск или безопасная игра? Пусть у нас есть возможность купить не два билета, а все сто. Тогда мы могли бы гарантировать выигрыш в одной лотерее (и дисперсия была бы нулевой); или же можно было сыграть в сотне разных тиражей, ничего не получая с вероятностью зато имея ненулевой шанс на выигрыш вплоть до долларов. Выбор одной из этих альтернатив лежит за рамками этой книги; все, что мы можем сделать здесь,- это объяснить, как произвести подсчеты.

В действительности имеется более простой способ вычисления дисперсии, чем прямое использование определения (8.13). (Есть все основания подозревать здесь какую-то скрытую от глаз математику; иначе с чего бы дисперсия в лотерейных примерах оказалась целым кратным Имеем

поскольку - константа; следовательно,

„Дисперсия есть среднее значение квадрата минус квадрат среднего значения"

Например, в задаче про лотерею средним значением оказывается или Вычитание (квадрата среднего) дает результаты, которые мы уже получили ранее более трудным путем.

Есть, однако, еще более простая формула, применимая, когда мы вычисляем для независимых X и Y. Имеем

поскольку, как мы знаем, для независимых случайных величин Следовательно,

„Дисперсия суммы независимых случайных величин равняется сумме их дисперсий" Так, например, дисперсия суммы, которую можно выиграть на один лотерейный билет, равняется

Следовательно, дисперсия суммарного выигрыша по двум лотерейным билетам в двух различных (независимых) лотереях составит Соответствующее значение дисперсии для независимых лотерейных билетов будет

Дисперсия суммы очков, выпавших на двух кубиках, может быть получена по той же формуле, поскольку есть сумма двух независимых случайных величин. Имеем

для правильного кубика; следовательно, случае смещенного центра масс

следовательно, если у обоих кубиков центр масс смещен. Заметьте, что в последнем случае дисперсия больше, хотя принимает среднее значение 7 чаще, чем в случае правильных кубиков. Если наша цель - выбросить побольше приносящих удачу семерок, то дисперсия - не лучший показатель успеха.

Ну хорошо, мы установили, как вычислить дисперсию. Но мы пока не дали ответа на вопрос, почему надо вычислять именно дисперсию. Все так делают, но почему? Основная причина заключается в неравенстве Чебышева которое устанавливает важное свойство дисперсии:

(Это неравенство отличается от неравенств Чебышёва для сумм, встретившихся нам в гл. 2.) На качественном уровне (8.17) утверждает, что случайная величина X редко принимает значения, далекие от своего среднего если ее дисперсия VX мала. Доказательство

тельство необычайно просто. Действительно,

деление на завершает доказательство.

Если мы обозначим математическое ожидание через а стандартное отклонение - через а и заменим в (8.17) на то условие превратится в следовательно, мы получим из (8.17)

Таким образом, X будет лежать в пределах -кратного стандартного отклонения от своего среднего значения за исключением случаев, вероятность которых не превышает Случайная величина будет лежать в пределах 2а от по крайней мере для 75% испытаний; в пределах от до - по крайней мере для 99%. Это случаи неравенства Чебышёва.

Если бросить пару кубиков раз, то общая сумма очков во всех бросаниях почти всегда, при больших будет близка к Причина этого следующая: дисперсия независимых бросаний составит Дисперсия в означает стандартное отклонение всего

Поэтому из неравенства Чебышёва получаем, что сумма очков будет лежать между

по крайней мере для 99% всех бросаний правильных кубиков. Например, итог миллиона бросаний с вероятностью более 99% будет заключен между 6.976 млн и 7.024 млн.

В общем случае, пусть X - любая случайная величина на вероятностном пространстве П, имеющая конечное математическое ожидание и конечное стандартное отклонение а. Тогда можно ввести в рассмотрение вероятностное пространство Пп, элементарными событиями которого являются -последовательности где каждое , а вероятность определяется как

Если теперь определить случайные величины формулой

то величина

будет суммой независимых случайных величин, которая соответствует процессу суммирования независимых реализаций величины X на П. Математическое ожидание будет равно а стандартное отклонение - ; следовательно, среднее значение реализаций,

будет лежать в пределах от до по крайней мере в 99% временного периода. Иными словами, если выбрать достаточно большое то среднее арифметическое независимых испытаний будет почти всегда очень близко к ожидаемому значению (В учебниках теории вероятностей доказывается еще более сильная теорема, называемая усиленным законом больших чисел; но нам достаточно и простого следствия неравенства Чебышёва, которое мы только что вывели.)

Иногда нам не известны характеристики вероятностного пространства, но требуется оценить математическое ожидание случайной величины X при помощи повторных наблюдений ее значения. (Например, нам могла бы понадобиться средняя полуденная температура января в Сан-Франциско; или же мы хотим узнать ожидаемую продолжительность жизни, на которой должны основывать свои расчеты страховые агенты.) Если в нашем распоряжении имеются независимые эмпирические наблюдения то мы можем предположить, что истинное математическое ожидание приблизительно равно

Можно оценить и дисперсию, используя формулу

Глядя на эту формулу, можно подумать, что в ней - типографская ошибка; казалось бы, там должно стоять как в (8.19), поскольку истинное значение дисперсии определяется в (8.15) через ожидаемые значения. Однако замена здесь на позволяет получить лучшую оценку, поскольку из определения (8.20) вытекает, что

Вот доказательство:

(В этой выкладке мы опираемся на независимость наблюдений, когда заменяем на )

На практике для оценки результатов эксперимента со случайной величиной X обычно вычисляют эмпирическое среднее и эмпирическое стандартное отклонение после чего записывают ответ в виде Вот, например, результаты бросаний пары кубиков, предположительно правильных.

Каждая, отдельно взятая величина полностью определяется своей функцией распределения. Также, для решения практических задач хватает знать несколько числовых характеристик, благодаря которым появляется возможность представить основные особенности случайной величины в краткой форме.

К таким величинам относят в первую очередь математическое ожидание и дисперсия .

Математическое ожидание — среднее значение случайной величины в теории вероятностей. Обозначается как .

Самым простым способом математическое ожидание случайной величины Х(w) , находят как интеграл Лебега по отношению к вероятностной мере Р исходном вероятностном пространстве

Еще найти математическое ожидание величины можно как интеграл Лебега от х по распределению вероятностей Р Х величины X :

где - множество всех возможных значений X .

Математическое ожидание функций от случайной величины X находится через распределение Р Х . Например , если X - случайная величина со значениями в и f(x) - однозначная борелевская функция Х , то:

Если F(x) - функция распределения X , то математическое ожидание представимо интегралом Лебега - Стилтьеса (или Римана - Стилтьеса):

при этом интегрируемость X в смысле (* ) соответствует конечности интеграла

В конкретных случаях, если X имеет дискретное распределение с вероятными значениями х k , k=1, 2 , . , и вероятностями , то

если X имеет абсолютно непрерывное распределение с плотностью вероятности р(х) , то

при этом существование математического ожидания равносильно абсолютной сходимости соответствующего ряда или интеграла.

Свойства математического ожидания случайной величины.

  • Математическое ожидание постоянной величины равно этой величине:

C - постоянная;

  • M=C.M[X]
  • Математическое ожидание суммы случайно взятых величин равно сумме их математических ожиданий:

  • Математическое ожидание произведения независимых случайно взятых величин = произведению их математических ожиданий:

M=M[X]+M[Y]

если X и Y независимы.

если сходится ряд:

Алгоритм вычисления математического ожидания.

Свойства дискретных случайных величин: все их значения можно перенумеровать натуральными числами; каждому значению приравнять отличную от нуля вероятность.

1. По очереди перемножаем пары: x i на p i .

2. Складываем произведение каждой пары x i p i .

Напрмер , для n = 4 :

Функция распределения дискретной случайной величины ступенчатая, она возрастает скачком в тех точках, вероятности которых имеют положительный знак.

Пример: Найти математическое ожидание по формуле.

Математическое ожидание – это среднее значение случайной величины.

Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности:

Пример.

X -4 6 10
р 0,2 0,3 0,5


Решение: Математическое ожидание равно сумме произведений всех возможных значений X на их вероятности:

М (X) = 4*0,2 + 6*0,3 +10*0,5 = 6.


Для вычисления математического ожидания удобно расчеты проводить в Excel (в особенности когда данных много), предлагаем воспользоваться готовым шаблоном ().

Пример для самостоятельного решения (можете применить калькулятор).
Найти математическое ожидание дискретной случайной величины X, заданной законом распределения:

X 0,21 0,54 0,61
р 0,1 0,5 0,4

Математическое ожидание обладает следующими свойствами.

Свойство 1. Математическое ожидание постоянной величины равно самой постоянной: М(С)=С.

Свойство 2. Постоянный множитель можно выносить за знак математического ожидания: М(СХ)=СМ(Х).

Свойство 3. Математическое ожидание произведения взаимно независимых случайных величин равно произведению математических ожиданий сомножителей: М (Х1Х2 ...Хп)=М (X1) М {Х2)*. ..*М (Xn)

Свойство 4. Математическое ожидание суммы случайных величин равно сумме математических ожиданий слагаемых: М(Хг + Х2+...+Хn) = М{Хг)+М(Х2)+…+М(Хn).

Задача 189. Найти математическое ожидание случайной вели­ чины Z, если известны математические ожидания X н Y: Z = X+2Y, M(X) = 5, M(Y) = 3;

Решение: Используя свойства математического ожидания (математическое ожидание суммы равно сумме математических ожи­даний слагаемых; постоянный множитель можно вынести за знак математического ожидания), получим M(Z)=M(X + 2Y)=M(X) + M(2Y)=M(X) + 2M(Y)= 5 + 2*3 = 11.

190. Используя свойства мaтематического ожидания, доказать, что: а) М(Х - Y) = M(X)-М (Y); б) математическое ожидание отклонения X-M(Х) равно нулю.

191. Дискретная случайная величина X принимает три возможных значения: x1= 4 С вероятностью р1 = 0,5; xЗ = 6 С вероятностью P2 = 0,3 и x3 с вероятностью р3. Найти: x3 и р3, зная, что М(Х)=8.

192. Дан перечень возможных значений дискретной случайной величины X: x1 = -1, х2 = 0, x3= 1 также известны математические ожидания этой величины и ее квадрата: M(Х) = 0,1, М(Х^2)=0,9. Найти вероятности p1, p2,p3 соответствующие возможным значениям xi

194. В партии из 10 деталей содержится три нестандартных. Наудачу отобраны две детали. Найти математическое ожидание дискретной случайной величины X - числа нестандартных деталей среди двух отобранных.

196. Найти математическое ожидание дискретной слу­чайной величины X-числа таких бросаний пяти игральных костей, в каждом из которых на двух костях по­ явится по одному очку, если общее число бросаний равно двадцати.



Математическое ожидание биномиального распределения равно произведению числа испытаний на вероятность появления события в одном испытании:

Математическое ожидание и дисперсия - чаще всего применяемые числовые характеристики случайной величины. Они характеризуют самые важные черты распределения: его положение и степень разбросанности. Во многих задачах практики полная, исчерпывающая характеристика случайной величины - закон распределения - или вообще не может быть получена, или вообще не нужна. В этих случаях ограничиваются приблизительным описанием случайной величины с помощью числовых характеристик.

Математическое ожидание часто называют просто средним значением случайной величины. Дисперсия случайной величины - характеристика рассеивания, разбросанности случайной величины около её математического ожидания.

Математическое ожидание дискретной случайной величины

Подойдём к понятию математического ожидания, сначала исходя из механической интерпретации распределения дискретной случайной величины. Пусть единичная масса распределена между точками оси абсцисс x 1 , x 2 , ..., x n , причём каждая материальная точка имеет соответствующую ей массу из p 1 , p 2 , ..., p n . Требуется выбрать одну точку на оси абсцисс, характеризующую положение всей системы материальных точек, с учётом их масс. Естественно в качестве такой точки взять центр массы системы материальных точек. Это есть среднее взвешенное значение случайной величины X , в которое абсцисса каждой точки x i входит с "весом", равным соответствующей вероятности. Полученное таким образом среднее значение случайной величины X называется её математическим ожиданием.

Математическим ожиданием дискретной случайной величины называется сумма произведений всех возможных её значений на вероятности этих значений:

Пример 1. Организована беспроигрышная лотерея. Имеется 1000 выигрышей, из них 400 по 10 руб. 300 - по 20 руб. 200 - по 100 руб. и 100 - по 200 руб. Каков средний размер выигрыша для купившего один билет?

Решение. Средний выигрыш мы найдём, если общую сумму выигрышей, которая равна 10*400 + 20*300 + 100*200 + 200*100 = 50000 руб, разделим на 1000 (общая сумма выигрышей). Тогда получим 50000/1000 = 50 руб. Но выражение для подсчёта среднего выигрыша можно представить и в следующем виде:

С другой стороны, в данных условиях размер выигрыша является случайной величиной, которая может принимать значения 10, 20, 100 и 200 руб. с вероятностями, равными соответственно 0,4; 0,3; 0,2; 0,1. Следовательно, ожидаемый средний выигрыш равен сумме произведений размеров выигрышей на вероятности их получения.

Пример 2. Издатель решил издать новую книгу. Продавать книгу он собирается за 280 руб., из которых 200 получит он сам, 50 - книжный магазин и 30 - автор. В таблице дана информация о затратах на издание книги и вероятности продажи определённого числа экземпляров книги.

Найти ожидаемую прибыль издателя.

Решение. Случайная величина "прибыль" равна разности доходов от продажи и стоимости затрат. Например, если будет продано 500 экземпляров книги, то доходы от продажи равны 200*500=100000, а затраты на издание 225000 руб. Таким образом, издателю грозит убыток размером в 125000 руб. В следующей таблице обобщены ожидаемые значения случайной величины - прибыли:

Число Прибыль x i Вероятность p i x i p i
500 -125000 0,20 -25000
1000 -50000 0,40 -20000
2000 100000 0,25 25000
3000 250000 0,10 25000
4000 400000 0,05 20000
Всего: 1,00 25000

Таким образом, получаем математическое ожидание прибыли издателя:

.

Пример 3. Вероятность попадания при одном выстреле p = 0,2 . Определить расход снарядов, обеспечивающих математическое ожидание числа попаданий, равное 5.

Решение. Из всё той же формулы математического ожидания, которую мы использовали до сих пор, выражаем x - расход снарядов:

.

Пример 4. Определить математическое ожидание случайной величины x числа попаданий при трёх выстрелах, если вероятность попадания при каждом выстреле p = 0,4 .

Подсказка: вероятность значений случайной величины найти по формуле Бернулли .

Свойства математического ожидания

Рассмотрим свойства математического ожидания.

Свойство 1. Математическое ожидание постоянной величины равно этой постоянной:

Свойство 2. Постоянный множитель можно выносить за знак математического ожидания:

Свойство 3. Математическое ожидание суммы (разности) случайных величин равно сумме (разности) их математических ожиданий:

Свойство 4. Математическое ожидание произведения случайных величин равно произведению их математических ожиданий:

Свойство 5. Если все значения случайной величины X уменьшить (увеличить) на одно и то же число С , то её математическое ожидание уменьшится (увеличится) на то же число:

Когда нельзя ограничиваться только математическим ожиданием

В большинстве случаев только математическое ожидание не может в достаточной степени характеризовать случайную величину.

Пусть случайные величины X и Y заданы следующими законами распределения:

Значение X Вероятность
-0,1 0,1
-0,01 0,2
0 0,4
0,01 0,2
0,1 0,1
Значение Y Вероятность
-20 0,3
-10 0,1
0 0,2
10 0,1
20 0,3

Математические ожидания этих величин одинаковы - равны нулю:

Однако характер распределения их различный. Случайная величина X может принимать только значения, мало отличающиеся от математического ожидания, а случайная величина Y может принимать значения, значительно отклоняющиеся от математического ожидания. Аналогичный пример: средняя заработная плата не даёт возможности судить об удельном весе высоко- и низкооплачиваемых рабочих. Иными словами, по математическому ожиданию нельзя судить о том, какие отклонения от него, хотя бы в среднем, возможны. Для этого нужно найти дисперсию случайной величины.

Дисперсия дискретной случайной величины

Дисперсией дискретной случайной величины X называется математическое ожидание квадрата отклонения её от математического ожидания:

Средним квадратическим отклонением случайной величины X называется арифметическое значение квадратного корня её дисперсии:

.

Пример 5. Вычислить дисперсии и средние квадратические отклонения случайных величин X и Y , законы распределения которых приведены в таблицах выше.

Решение. Математические ожидания случайных величин X и Y , как было найдено выше, равны нулю. Согласно формуле дисперсии при Е (х )=Е (y )=0 получаем:

Тогда средние квадратические отклонения случайных величин X и Y составляют

.

Таким образом, при одинаковых математических ожиданиях дисперсия случайной величины X очень мала, а случайной величины Y - значительная. Это следствие различия в их распределении.

Пример 6. У инвестора есть 4 альтернативных проекта инвестиций. В таблице обобщены данные об ожидаемой прибыли в этих проектах с соответствующей вероятностью.

Проект 1 Проект 2 Проект 3 Проект 4
500, P =1 1000, P =0,5 500, P =0,5 500, P =0,5
0, P =0,5 1000, P =0,25 10500, P =0,25
0, P =0,25 9500, P =0,25

Найти для каждой альтернативы математическое ожидание, дисперсию и среднее квадратическое отклонение.

Решение. Покажем, как вычисляются эти величины для 3-й альтернативы:

В таблице обобщены найденные величины для всех альтернатив.

У всех альтернатив одинаковы математические ожидания. Это означает, что в долгосрочном периоде у всех - одинаковые доходы. Стандартное отклонение можно интерпретировать как единицу измерения риска - чем оно больше, тем больше риск инвестиций. Инвестор, который не желает большого риска, выберет проект 1, так как у него наименьшее стандартное отклонение (0). Если же инвестор отдаёт предпочтение риску и большим доходам в короткий период, то он выберет проект наибольшим стандартным отклонением - проект 4.

Свойства дисперсии

Приведём свойства дисперсии.

Свойство 1. Дисперсия постоянной величины равна нулю:

Свойство 2. Постоянный множитель можно выносить за знак дисперсии, возводя его при этом в квадрат:

.

Свойство 3. Дисперсия случайной величины равна математическому ожиданию квадрата этой величины, из которого вычтен квадрат математического ожидания самой величины:

,

где .

Свойство 4. Дисперсия суммы (разности) случайных величин равна сумме (разности) их дисперсий:

Пример 7. Известно, что дискретная случайная величина X принимает лишь два значения: −3 и 7. Кроме того, известно математическое ожидание: E (X ) = 4 . Найти дисперсию дискретной случайной величины.

Решение. Обозначим через p вероятность, с которой случайная величина принимает значение x 1 = −3 . Тогда вероятностью значения x 2 = 7 будет 1 − p . Выведем уравнение для математического ожидания:

E (X ) = x 1 p + x 2 (1 − p ) = −3p + 7(1 − p ) = 4 ,

откуда получаем вероятности: p = 0,3 и 1 − p = 0,7 .

Закон распределения случайной величины:

X −3 7
p 0,3 0,7

Дисперсию данной случайной величины вычислим по формуле из свойства 3 дисперсии:

D (X ) = 2,7 + 34,3 − 16 = 21 .

Найти математическое ожидание случайной величины самостоятельно, а затем посмотреть решение

Пример 8. Дискретная случайная величина X принимает лишь два значения. Большее из значений 3 она принимает с вероятностью 0,4. Кроме того, известна дисперсия случайной величины D (X ) = 6 . Найти математическое ожидание случайной величины.

Пример 9. В урне 6 белых и 4 чёрных шара. Из урны вынимают 3 шара. Число белых шаров среди вынутых шаров является дискретной случайной величиной X . Найти математическое ожидание и дисперсию этой случайной величины.

Решение. Случайная величина X может принимать значения 0, 1, 2, 3. Соответствующие им вероятности можно вычислить по правилу умножения вероятностей . Закон распределения случайной величины:

X 0 1 2 3
p 1/30 3/10 1/2 1/6

Отсюда математическое ожидание данной случайной величины:

M (X ) = 3/10 + 1 + 1/2 = 1,8 .

Дисперсия данной случайной величины:

D (X ) = 0,3 + 2 + 1,5 − 3,24 = 0,56 .

Математическое ожидание и дисперсия непрерывной случайной величины

Для непрерывной случайной величины механическая интерпретация математического ожидания сохранит тот же смысл: центр массы для единичной массы, распределённой непрерывно на оси абсцисс с плотностью f (x ). В отличие от дискретной случайной величиной, у которой аргумент функции x i изменяется скачкообразно, у непрерывной случайной величины аргумент меняется непрерывно. Но математическое ожидание непрерывной случайной величины также связано с её средним значением.

Чтобы находить математическое ожидание и дисперсию непрерывной случайной величины, нужно находить определённые интегралы . Если дана функция плотности непрерывной случайной величины, то она непосредственно входит в подынтегральное выражение. Если дана функция распределения вероятностей, то, дифференцируя её, нужно найти функцию плотности.

Арифметическое среднее всех возможных значений непрерывной случайной величины называется её математическим ожиданием , обозначаемым или .

Теория вероятности - особый раздел математики, который изучают только студенты высших учебных заведений. Вы любите расчёты и формулы? Вас не пугают перспективы знакомства с нормальным распределением, энтропией ансамбля, математическим ожиданием и дисперсией дискретной случайной величины? Тогда этот предмет вам будет очень интересен. Давайте познакомимся с несколькими важнейшими базовыми понятиями этого раздела науки.

Вспомним основы

Даже если вы помните самые простые понятия теории вероятности, не пренебрегайте первыми абзацами статьи. Дело в том, что без четкого понимания основ вы не сможете работать с формулами, рассматриваемыми далее.

Итак, происходит некоторое случайное событие, некий эксперимент. В результате производимых действий мы можем получить несколько исходов - одни из них встречаются чаще, другие - реже. Вероятность события - это отношение количества реально полученных исходов одного типа к общему числу возможных. Только зная классическое определение данного понятия, вы сможете приступить к изучению математического ожидания и дисперсии непрерывных случайных величин.

Среднее арифметическое

Ещё в школе на уроках математики вы начинали работать со средним арифметическим. Это понятие широко используется в теории вероятности, и потому его нельзя обойти стороной. Главным для нас на данный момент является то, что мы столкнемся с ним в формулах математического ожидания и дисперсии случайной величины.

Мы имеем последовательность чисел и хотим найти среднее арифметическое. Всё, что от нас требуется - просуммировать всё имеющееся и разделить на количество элементов в последовательности. Пусть мы имеем числа от 1 до 9. Сумма элементов будет равна 45, и это значение мы разделим на 9. Ответ: - 5.

Дисперсия

Говоря научным языком, дисперсия - это средний квадрат отклонений полученных значений признака от среднего арифметического. Обозначается одна заглавной латинской буквой D. Что нужно, чтобы её рассчитать? Для каждого элемента последовательности посчитаем разность между имеющимся числом и средним арифметическим и возведем в квадрат. Значений получится ровно столько, сколько может быть исходов у рассматриваемого нами события. Далее мы суммируем всё полученное и делим на количество элементов в последовательности. Если у нас возможны пять исходов, то делим на пять.

У дисперсии есть и свойства, которые нужно запомнить, чтобы применять при решении задач. Например, при увеличении случайной величины в X раз, дисперсия увеличивается в X в квадрате раз (т. е. X*X). Она никогда не бывает меньше нуля и не зависит от сдвига значений на равное значение в большую или меньшую сторону. Кроме того, для независимых испытаний дисперсия суммы равна сумме дисперсий.

Теперь нам обязательно нужно рассмотреть примеры дисперсии дискретной случайной величины и математического ожидания.

Предположим, что мы провели 21 эксперимент и получили 7 различных исходов. Каждый из них мы наблюдали, соответственно, 1,2,2,3,4,4 и 5 раз. Чему будет равна дисперсия?

Сначала посчитаем среднее арифметическое: сумма элементов, разумеется, равна 21. Делим её на 7, получая 3. Теперь из каждого числа исходной последовательности вычтем 3, каждое значение возведем в квадрат, а результаты сложим вместе. Получится 12. Теперь нам остается разделить число на количество элементов, и, казалось бы, всё. Но есть загвоздка! Давайте её обсудим.

Зависимость от количества экспериментов

Оказывается, при расчёте дисперсии в знаменателе может стоять одно из двух чисел: либо N, либо N-1. Здесь N - это число проведенных экспериментов или число элементов в последовательности (что, по сути, одно и то же). От чего это зависит?

Если количество испытаний измеряется сотнями, то мы должны ставить в знаменатель N. Если единицами, то N-1. Границу ученые решили провести достаточно символически: на сегодняшний день она проходит по цифре 30. Если экспериментов мы провели менее 30, то делить сумму будем на N-1, а если более - то на N.

Задача

Давайте вернемся к нашему примеру решения задачи на дисперсию и математическое ожидание. Мы получили промежуточное число 12, которое нужно было разделить на N или N-1. Поскольку экспериментов мы провели 21, что меньше 30, выберем второй вариант. Итак, ответ: дисперсия равна 12 / 2 = 2.

Математическое ожидание

Перейдем ко второму понятию, которое мы обязательно должны рассмотреть данной статье. Математическое ожидание - это результат сложения всех возможных исходов, помноженных на соответствующие вероятности. Важно понимать, что полученное значение, как и результат расчёта дисперсии, получается всего один раз для целой задачи, сколько бы исходов в ней не рассматривалось.

Формула математического ожидания достаточно проста: берем исход, умножаем на его вероятность, прибавляем то же самое для второго, третьего результата и т. д. Всё, связанное с этим понятием, рассчитывается несложно. Например, сумма матожиданий равна матожиданию суммы. Для произведения актуально то же самое. Такие простые операции позволяет с собой выполнять далеко не каждая величина в теории вероятности. Давайте возьмем задачу и посчитаем значение сразу двух изученных нами понятий. Кроме того, мы отвлекались на теорию - пришло время попрактиковаться.

Ещё один пример

Мы провели 50 испытаний и получили 10 видов исходов - цифры от 0 до 9 - появляющихся в различном процентном отношении. Это, соответственно: 2%, 10%, 4%, 14%, 2%,18%, 6%, 16%, 10%, 18%. Напомним, что для получения вероятностей требуется разделить значения в процентах на 100. Таким образом, получим 0,02; 0,1 и т.д. Представим для дисперсии случайной величины и математического ожидания пример решения задачи.

Среднее арифметическое рассчитаем по формуле, которую помним с младшей школы: 50/10 = 5.

Теперь переведем вероятности в количество исходов «в штуках», чтобы было удобнее считать. Получим 1, 5, 2, 7, 1, 9, 3, 8, 5 и 9. Из каждого полученного значения вычтем среднее арифметическое, после чего каждый из полученных результатов возведем в квадрат. Посмотрите, как это сделать, на примере первого элемента: 1 - 5 = (-4). Далее: (-4) * (-4) = 16. Для остальных значений проделайте эти операции самостоятельно. Если вы всё сделали правильно, то после сложения всех вы получите 90.

Продолжим расчёт дисперсии и математического ожидания, разделив 90 на N. Почему мы выбираем N, а не N-1? Правильно, потому что количество проведенных экспериментов превышает 30. Итак: 90/10 = 9. Дисперсию мы получили. Если у вас вышло другое число, не отчаивайтесь. Скорее всего, вы допустили банальную ошибку при расчётах. Перепроверьте написанное, и наверняка всё встанет на свои места.

Наконец, вспомним формулу математического ожидания. Не будем приводить всех расчётов, напишем лишь ответ, с которым вы сможете свериться, закончив все требуемые процедуры. Матожидание будет равно 5,48. Напомним лишь, как осуществлять операции, на примере первых элементов: 0*0,02 + 1*0,1… и так далее. Как видите, мы просто умножаем значение исхода на его вероятность.

Отклонение

Ещё одно понятие, тесно связанное с дисперсией и математическим ожиданием - среднее квадратичное отклонение. Обозначается оно либо латинскими буквами sd, либо греческой строчной «сигмой». Данное понятие показывает, насколько в среднем отклоняются значения от центрального признака. Чтобы найти её значение, требуется рассчитать квадратный корень из дисперсии.

Если вы построите график нормального распределения и захотите увидеть непосредственно на нём квадратичного отклонения, это можно сделать в несколько этапов. Возьмите половину изображения слева или справа от моды (центрального значения), проведите перпендикуляр к горизонтальной оси так, чтобы площади получившихся фигур были равны. Величина отрезка между серединой распределения и получившейся проекцией на горизонтальную ось и будет представлять собой среднее квадратичное отклонение.

Программное обеспечение

Как видно из описаний формул и представленных примеров, расчеты дисперсии и математического ожидания - не самая простая процедура с арифметической точки зрения. Чтобы не тратить время, имеет смысл воспользоваться программой, используемой в высших учебных заведениях - она называется «R». В ней есть функции, позволяющие рассчитывать значения для многих понятий из статистики и теории вероятности.

Например, вы задаете вектор значений. Делается это следующим образом: vector <-c(1,5,2…). Теперь, когда вам потребуется посчитать какие-либо значения для этого вектора, вы пишете функцию и задаете его в качестве аргумента. Для нахождения дисперсии вам нужно будет использовать функцию var. Пример её использования: var(vector). Далее вы просто нажимаете «ввод» и получаете результат.

В заключение

Дисперсия и математическое ожидание - это без которых сложно в дальнейшем что-либо рассчитать. В основном курсе лекций в вузах они рассматриваются уже в первые месяцы изучения предмета. Именно из-за непонимания этих простейших понятий и неумения их рассчитать многие студенты сразу начинают отставать по программе и позже получают плохие отметки по результатам сессии, что лишает их стипендии.

Потренируйтесь хотя бы одну неделю по полчаса в день, решая задания, схожие с представленными в данной статье. Тогда на любой контрольной по теории вероятности вы справитесь с примерами без посторонних подсказок и шпаргалок.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ