Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Определение точки разрыва функции
Конечная точка x 0 называется точкой разрыва функции f(x) , если функция определена на некоторой проколотой окрестности точки x 0 , но не является непрерывной в этой точке.

То есть, в точке разрыва, функция либо не определена, либо определена, но хотя бы один односторонний предел в этой точке или не существует, или не равен значению f(x 0 ) функции в точке x 0 . См. «Определение непрерывности функции в точке ».

Определение точки разрыва 1-го рода
Точка называется точкой разрыва первого рода , если является точкой разрыва и существуют конечные односторонние пределы слева и справа :
.

Определение скачка функции
Скачком Δ функции в точке называется разность пределов справа и слева
.

Определение точки устранимого разрыва
Точка называется точкой устранимого разрыва , если существует предел
,
но функция в точке или не определена, или не равна предельному значению: .

Таким образом, точка устранимого разрыва - это точка разрыва первого рода, в которой скачек функции равен нулю.

Определение точки разрыва 2-го рода
Точка разрыва называется точкой разрыва второго рода , если она не является точкой разрыва 1-го рода. То есть если не существует, хотя бы одного одностороннего предела, или хотя бы один односторонний предел в точке равен бесконечности.

Исследование функций на непрерывность

При исследовании функций на непрерывность мы используем следующие факты.

  • Элементарные функции и обратные к ним непрерывны на своей области определения. К ним относятся следующие функции:
    , а также постоянная и обратные к ним функции. См. «Справочник по элементарным функциям ».
  • Сумма, разность и произведение непрерывных, на некотором множестве функций, является непрерывной, функцией на этом множестве.
    Частное двух непрерывных, на некотором множестве функций, является непрерывной, функцией на этом множестве, за исключением точек, в которых знаменатель дроби обращается в нуль. См. «Арифметические свойства непрерывных функций »
  • Сложная функция непрерывна в точке , если функция непрерывна в точке , а функция непрерывна в точке . См. «Предел и непрерывность сложной функции »

Примеры

Пример 1

Задана функция и два значения аргумента и . Требуется: 1) установить, является ли данная функция непрерывной или разрывной для каждого из данных значений аргумента; 2) в случае разрыва функции найти ее пределы в точке разрыва слева и справа, установить вид разрыва; 3) сделать схематический чертеж.
.

Заданная функция является сложной. Ее можно рассматривать как композицию двух функций:
, . Тогда
.

Рассмотрим функцию . Она составлена из функции и постоянных с помощью арифметических операций сложения и деления. Функция является элементарной - степенной функцией с показателем степени 1 . Она определена и непрерывна для всех значений переменной . Поэтому функция определена и непрерывна для всех , кроме точек, в которых знаменатель дроби обращается в нуль. Приравниваем знаменатель к нулю и решаем уравнение:
.
Получаем единственный корень .
Итак, функция определена и непрерывна для всех , кроме точки .

Рассмотрим функцию . Это показательная функция с положительным основанием степени. Она определена и непрерывна для всех значений переменной .
Поэтому заданная функция определена и непрерывна для всех значений переменной , кроме точки .

Таким образом, в точке , заданная функция является непрерывной.

График функции y = 4 1/(x+2) .

Рассмотрим точку . В этой точке функция не определена. Поэтому она не является непрерывной. Установим род разрыва. Для этого находим односторонние пределы.

Используя связь между бесконечно большими и бесконечно малыми функциями , для предела слева имеем:
при ,
,
,
.

Здесь мы использовали следующие общепринятые обозначения:
.
Также мы использовали свойство показательной функции с основанием :
.

Аналогично, для предела справа имеем:
при ,
,
,
.

Поскольку один из односторонних пределов равен бесконечности, то в точке разрыв второго рода.

В точке функция непрерывна.
В точке разрыв второго рода,
.

Пример 2

Задана функция . Найти точки разрыва функции, если они существуют. Указать род разрыва и скачек функции, если есть. Сделать чертеж.
.

График заданной функции.

Функция является степенной функцией с целым показателем степени, равным 1 . Такую функцию также называют линейной. Она определена и непрерывна для всех значений переменной .

В входят еще две функции: и . Они составлены из функции и постоянных с помощью арифметических операций сложения и умножения:
, .
Поэтому они также непрерывны для всех .

Поскольку функции, входящие в состав непрерывны для всех , то может иметь точки разрыва только в точках склейки ее составляющих. Это точки и . Исследуем на непрерывность в этих точках. Для этого найдем односторонние пределы.

Рассмотрим точку . Чтобы найти левый предел функции в этой точке, мы должны использовать значения этой функции в любой левой проколотой окрестности точки . Возьмем окрестность . На ней . Тогда предел слева:
.
Здесь мы использовали тот факт, что функция является непрерывной в точке (как и в любой другой точке). Поэтому ее левый (как и правый) предел равен значению функции в этой точке.

Найдем правый предел в точке . Для этого мы должны использовать значения функции в любой правой проколотой окрестности этой точки. Возьмем окрестность . На ней . Тогда предел справа:
.
Здесь мы также воспользовались непрерывностью функции .

Поскольку, в точке , предел слева не равен пределу справа, то в ней функция не является непрерывной - это точка разрыва. Поскольку односторонние пределы конечны, то это точка разрыва первого рода. Скачек функции:
.

Теперь рассмотрим точку . Тем же способом вычисляем односторонние пределы:
;
.
Поскольку функция определена в точке и левый предел равен правому, то функция непрерывна в этой точке.

Функция имеет разрыв первого рода в точке . Скачек функции в ней: . В остальных точках функция непрерывна.

Пример 3

Определить точки разрыва функции и исследовать характер этих точек, если
.

Воспользуемся тем, что линейная функция определена и непрерывна для всех . Заданная функция составлена из линейной функции и постоянных с помощью арифметических операций сложения, вычитания, умножения и деления:
.
Поэтому она определена и непрерывна для всех , за исключением точек, в которых знаменатель дроби обращается в нуль.

Найдем эти точки. Приравниваем знаменатель к нулю и решаем квадратное уравнение :
;
;
; .
Тогда
.

Используем формулу:
.
С ее помощью, разложим числитель на множители:
.

Тогда заданная функция примет вид:
(П1) .
Она определена и непрерывна для всех , кроме точек и . Поэтому точки и являются точками разрыва функции.

Разделим числитель и знаменатель дроби в (П1) на :
(П2) .
Такую операцию мы можем проделать, если . Таким образом,
при .
То есть функции и отличаются только в одной точке: определена при , а в этой точке не определена.

Чтобы определить род точек разрыва, нам нужно найти односторонние пределы функции в точках и . Для их вычисления мы воспользуемся тем, что если значения функции изменить, или сделать неопределенными в конечном числе точек, то это не окажет ни какого влияние на величину или существование предела в произвольной точке (см. «Влияние значений функции в конечном числе точек на величину предела »). То есть пределы функции в любых точках равны пределам функции .

Рассмотрим точку . Знаменатель дроби в функции , при в нуль не обращается. Поэтому она определена и непрерывна при . Отсюда следует, что существует предел при и он равен значению функции в этой точке:
.
Поэтому точка является точкой устранимого разрыва первого рода.

Рассмотрим точку . Используя связь бесконечно малых и бесконечно больших функций , имеем:
;
.
Поскольку пределы бесконечные, то в этой точке разрыв второго рода.

Функция имеет точку устранимого разрыва первого рода при , и точку разрыва второго рода при .

Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.

Все точки разрыва функции разделяются на точки разрыва первого и второго рода .

Говорят, что функция f (x ) имеет точку разрыва первого рода при x = a , если в это точке

При этом возможно следующие два случая:

  • Левосторонний предел и правосторонний предел равны друг другу:

Такая точка называется точкой устранимого разрыва .

  • Левосторонний предел и правосторонний предел не равны друг другу:

Такая точка называется точкой конечного разрыва . Модуль разности значений односторонних пределов называется скачком функции .

Функция f (x ) имеет точку разрыва второго рода при x = a , если по крайней мере один из односторонних пределов не существует или равен бесконечности.

Пример 1

Исследовать функцию на непрерывность.


Решение.

Данная функция не определена в точках x = − 1 и x = 1. Следовательно, функция имеет разрывы в точкахx = ± 1. Чтобы определить тип разрыва, вычислим односторонние пределы в этих точках.

Поскольку левосторонний предел при x = − 1 равен бесконечности, то данная точка является точкой разрыва второго рода.

Аналогично, левосторонний предел в точке x = 1 равен бесконечности. Эта точка также является точкой разрыва второго рода.

Пример 2

Показать, что функция имеет устранимый разрыв в точке x = 0.


Решение.

Очевидно, данная функция не определена при x = 0. Поскольку sin x является непрерывной функцией для всехx , то искомая функция также непрерывна при всех x за исключением точки x = 0.
Так как , то в данной точке существует устранимый разрыв. Мы можем сконструировать новую функцию

которая будет непрерывной при любом действительном x .

Пример 3

Найти точки разрыва функции , если они существуют.


Решение.

Данная функция существует при всех значениях x , однако она состоит из двух различных функций и, поэтому, не является элементарной. Исследуем "поведение" этой функции вблизи точки x = 0, где ее аналитическое выражение изменяется.



Вычислим односторонние пределеы при x = 0.

Следовательно, функция имеет точку разрыва первого рода при x = 0. Скачок функции в этой точке равен

При всех других значениях x функция является непрерывной, поскольку обе составляющие функции слева и справа от точки x = 0 представляют собой элементарные функции без точек разрыва.

Пример 4

Найти точки разрыва функции , если они существуют.


Решение.

Данная элементарная функция определена для всех x , исключая точку x = 0, где она имеет разрыв. Найдем односторонние пределы в этой точке.

Видно, что в точке x = 0 существует разрыв первого рода (рисунок 2).

Рис.2 Рис.3

Пример 5

Найти точки разрыва функции , если таковые существуют.


Решение.

Функция определена и непрерывна при всех x , за исключением точки , где существует разрыв. Исследуем точку разрыва.

Так как значения односторонних пределов конечны, то, следовательно, в точке существует разрыв первого рода. График функции схематически показан на рисунке 3.

Свойство 1: (Первая теорема Вейерштрасса (Вейерштрасс Карл (1815-1897) - немецкий математик)). Функция, непрерывная на отрезке, ограничена на этом отрезке, т.е. на отрезке выполняется условие - .

Доказательство этого свойства основано на том, что функция, непрерывная в точке , ограничена в некоторой ее окрестности, а если разбивать отрезок на бесконечное количество отрезков, которые “стягиваются” к точке , то образуется некоторая окрестность точки .

Свойство 2: Функция, непрерывная на отрезке , принимает на нем наибольшее и наименьшее значения.

Т.е. существуют такие значения и , что , причем .

Отметим эти наибольшие и наименьшие значения функция может принимать на отрезке и несколько раз (например - ).

Разность между наибольшим и наименьшим значением функции на отрезке называется колебанием функции на отрезке.

Свойство 3: (Вторая теорема Больцано - Коши). Функция, непрерывная на отрезке , принимает на этом отрезке все значения между двумя произвольными величинами.

Свойство 4: Если функция непрерывна в точке , то существует некоторая окрестность точки , в которой функция сохраняет знак.

Свойство 5: (Первая теорема Больцано (1781-1848) - Коши). Если функция - непрерывная на отрезке и имеет на концах отрезка значения противоположных знаков, то существует такая точка внутри этого отрезка, где .

Т.е. если , то .

Определение. Функция называется равномерно непрерывной на отрезке , если для любого существует такое, что для любых точек и таких, что верно неравенство .

Пример. Исследовать на непрерывность функцию и определить тип точек разрыва, если они есть. в точке функция непрерывна в точке

точка разрыва 1 - го рода

Исследование функции на непрерывность в точке проводится по уже накатанной рутинной схеме, которая состоит в проверке трёх условий непрерывности:

Пример 1

Исследовать функцию на непрерывность. Определить характер разрывов функции, если они существуют. Выполнить чертёж.

Решение :

1) Под прицел попадает единственная точка , в которой функция не определена.


Односторонние пределы конечны и равны.

Таким образом, в точке функция терпит устранимый разрыв.

Как выглядит график данной функции?

Хочется провести упрощение , и вроде бы получается обычная парабола. НО исходная функция не определена в точке , поэтому обязательна следующая оговорка:

Выполним чертёж:

Ответ : функция непрерывна на всей числовой прямой кроме точки , в которой она терпит устранимый разрыв.

Функцию можно доопределить хорошим или не очень способом, но по условию этого не требуется.

Вы скажете, пример надуманный? Ничуть. Десятки раз встречалось на практике. Почти все задачи сайта родом из реальных самостоятельных и контрольных работ.

Разделаемся с любимыми модулями:

Пример 2

Исследовать функцию на непрерывность. Определить характер разрывов функции, если они существуют. Выполнить чертёж.

Решение : почему-то студенты боятся и не любят функции с модулем, хотя ничего сложного в них нет. Таких вещей мы уже немного коснулись на уроке Геометрические преобразования графиков . Поскольку модуль неотрицателен, то он раскрывается следующим образом: , где «альфа» - некоторое выражение. В данном случае , и наша функция должна расписаться кусочным образом:

Но дроби обоих кусков предстоит сократить на . Сокращение, как и в предыдущем примере, не пройдёт без последствий. Исходная функция не определена в точке , так как знаменатель обращается в ноль. Поэтому в системе следует дополнительно указать условие , и первое неравенство сделать строгим:

Теперь об ОЧЕНЬ ПОЛЕЗНОМ приёме решения : перед чистовым оформлением задачи на черновике выгодно сделать чертёж (независимо от того, требуется он по условию или нет). Это поможет, во-первых, сразу увидеть точки непрерывности и точки разрыва, а, во-вторых, 100%-но убережёт от ошибок при нахождении односторонних пределов.

Выполним чертёж. В соответствии с нашими выкладками, слева от точки необходимо начертить фрагмент параболы (синий цвет), а справа - кусок параболы (красный цвет), при этом функция не определена в самой точке :

Если есть сомнения, возьмите несколько значений «икс», подставьте их в функцию (не забывая, что модуль уничтожает возможный знак «минус») и сверьтесь с графиком.


Исследуем функцию на непрерывность аналитически:

1) Функция не определена в точке , поэтому сразу можно сказать, что не является в ней непрерывной.

2) Установим характер разрыва, для этого вычислим односторонние пределы:

Односторонние пределы конечны и различны, значит, функция терпит разрыв 1-го рода со скачком в точке . Заметьте, что не имеет значения, определена функция в точке разрыва или нет.

Теперь остаётся перенести чертёж с черновика (он сделан как бы с помощью исследования;-)) и завершить задание:

Ответ : функция непрерывна на всей числовой прямой кроме точки , в которой она терпит разрыв первого рода со скачком.

Иногда требуют дополнительно указать скачок разрыва. Вычисляется он элементарно - из правого предела нужно вычесть левый предел: , то есть в точке разрыва наша функция прыгнула на 2 единицы вниз (о чём нам сообщает знак «минус»).

Пример 3

Исследовать функцию на непрерывность. Определить характер разрывов функции, если они существуют. Сделать чертёж.

Это пример для самостоятельного решения, примерный образец решения в конце урока.

Перейдём к наиболее популярной и распространённой версии задания, когда функция состоит из трёх кусков:

Пример 4

Исследовать функцию на непрерывность и построить график функции

.

Решение : очевидно, что все три части функции непрерывны на соответствующих интервалах, поэтому осталось проверить только две точки «стыка» между кусками. Сначала выполним чертёж на черновике, технику построения я достаточно подробно закомментировал в первой части статьи. Единственное, необходимо аккуратно проследить за нашими особенными точками: в силу неравенства значение принадлежит прямой (зелёная точка), и в силу неравенство значение принадлежит параболе (красная точка):


Ну вот, в принципе, всё понятно =) Осталось оформить решение. Для каждой из двух «стыковых» точек стандартно проверяем 3 условия непрерывности:

I)

1)


Односторонние пределы конечны и различны, значит, функция терпит разрыв 1-го рода со скачком в точке .

Вычислим скачок разрыва как разность правого и левого пределов:
, то есть, график рванул на одну единицу вверх.

II) Исследуем на непрерывность точку

1) - функция определена в данной точке.

2) Найдём односторонние пределы:

- односторонние пределы конечны и равны, значит, существует общий предел.

3)

На завершающем этапе переносим чертёж на чистовик, после чего ставим финальный аккорд:

Ответ : функция непрерывна на всей числовой прямой, кроме точки , в которой она терпит разрыв первого рода со скачком.

Пример 5

Исследовать функцию на непрерывность и построить её график .

Это пример для самостоятельного решения, краткое решение и примерный образец оформления задачи в конце урока.

Может сложиться впечатление, что в одной точке функция обязательно должна быть непрерывной, а в другой - обязательно должен быть разрыв. На практике это далеко не всегда так. Постарайтесь не пренебрегать оставшимися примерами - будет несколько интересных и важных фишек:

Пример 6

Дана функция . Исследовать функцию на непрерывность в точках . Построить график.

Решение : и снова сразу выполним чертёж на черновике:

Особенность данного графика состоит в том, что при кусочная функция задаётся уравнением оси абсцисс . Здесь данный участок прорисован зелёным цветом, а в тетради его обычно жирно выделяют простым карандашом. И, конечно же, не забываем про наших баранов: значение относится к ветке тангенса (красная точка), а значение принадлежит прямой .

Из чертежа всё понятно - функция непрерывна на всей числовой прямой, осталось оформить решение, которое доводится до полного автоматизма буквально после 3-4-х подобных примеров:

I) Исследуем на непрерывность точку

2) Вычислим односторонние пределы:

, значит, общий предел существует.

Случился тут небольшой курьёз. Дело в том, что я создал немало материалов о пределах функции , и несколько раз хотел, да несколько раз забывал об одном простом вопросе. И вот, невероятным усилием воли таки заставил себя не потерять мысль =) Скорее всего, некоторые читатели-«чайники» сомневаются: чему равен предел константы? Предел константы равен самой константе. В данном случае предел нуля равен самому нулю (левосторонний предел).

3) - предел функции в точке равен значению данной функции в данной точке.

Таким образом, функция непрерывна в точке по определению непрерывности функции в точке.

II) Исследуем на непрерывность точку

1) - функция определена в данной точке.

2) Найдём односторонние пределы:

И здесь, в правостороннем пределе - предел единицы равен самой единице.

- общий предел существует.

3) - предел функции в точке равен значению данной функции в данной точке.

Таким образом, функция непрерывна в точке по определению непрерывности функции в точке.

Как обычно, после исследования переносим наш чертёж на чистовик.

Ответ : функция непрерывна в точках .

Обратите внимание, что в условии нас ничего не спрашивали про исследование всей функции на непрерывность, и хорошим математическим тоном считается формулировать точный и чёткий ответ на поставленный вопрос. Кстати, если по условию не требуется строить график, то вы имеете полное право его и не строить (правда, потом преподаватель может заставить это сделать).

Небольшая математическая «скороговорка» для самостоятельного решения:

Пример 7

Дана функция .

Исследовать функцию на непрерывность в точках . Классифицировать точки разрыва, если они есть. Выполнить чертёж.

Постарайтесь правильно «выговорить» все «слова» =) И график нарисовать поточнее, точность, она везде лишней не будет;-)

Как вы помните, я рекомендовал незамедлительно выполнять чертёж на черновике, но время от времени попадаются такие примеры, где не сразу сообразишь, как выглядит график. Поэтому в ряде случаев выгодно сначала найти односторонние пределы и только потом на основе исследования изобразить ветви. В двух заключительных примерах мы, кроме того, освоим технику вычисления некоторых односторонних пределов:

Пример 8

Исследовать на непрерывность функцию и построить её схематический график.

Решение : нехорошие точки очевидны: (обращает в ноль знаменатель показателя) и (обращает в ноль знаменатель всей дроби). Малопонятно, как выглядит график данной функции, а значит, сначала лучше провести исследование:

I) Исследуем на непрерывность точку

2) Найдём односторонние пределы:

Обратите внимание на типовой приём вычисления одностороннего предела : в функцию вместо «икса» мы подставляем . В знаменателе никакого криминала: «добавка» «минус ноль» не играет роли, и получается «четыре». А вот в числителе происходит небольшой триллер: сначала в знаменателе показателя убиваем -1 и 1, в результате чего получается . Единица, делённая на , равна «минус бесконечности», следовательно: . И, наконец, «двойка» в бесконечно большой отрицательной степени равна нулю: . Или, если ещё подробнее: .

Вычислим правосторонний предел:

И здесь - вместо «икса» подставляем . В знаменателе «добавка» снова не играет роли: . В числителе проводятся аналогичные предыдущему пределу действия: уничтожаем противоположные числа и делим единицу на:

Правосторонний предел бесконечен, значит, функция терпит разрыв 2-го рода в точке .

II) Исследуем на непрерывность точку

1) Функция не определена в данной точке.

2) Вычислим левосторонний предел:

Метод такой же: подставляем в функцию вместо «икса» . В числителе ничего интересного - получается конечное положительно число . А в знаменателе раскрываем скобки, убираем «тройки», и решающую роль играет «добавка» .

По итогу, конечное положительное число, делённое на бесконечно малое положительное число , даёт «плюс бесконечность»: .

Правосторонний предел, как брат близнец, за тем лишь исключением, что в знаменателе выплывает бесконечно малое отрицательное число :

Односторонние пределы бесконечны, значит, функция терпит разрыв 2-го рода в точке .

Таким образом, у нас две точки разрыва, и, очевидно, три ветки графика. Для каждой ветки целесообразно провести поточечное построение, т.е. взять несколько значений «икс» и подставить их в . Заметьте, что по условию допускается построениесхематического чертежа, и такое послабление естественно для ручной работы. Я строю графики с помощью проги, поэтому не имею подобных затруднений, вот достаточно точная картинка:

Прямые являются вертикальными асимптотами для графика данной функции.

Ответ : функция непрерывна на всей числовой прямой кроме точек , в которых она терпит разрывы 2-го рода.

Более простая функция для самостоятельного решения:

Пример 9

Исследовать на непрерывность функцию и выполнить схематический чертёж.

Примерный образец решения в конце, который подкрался незаметно.

До скорых встреч!

Решения и ответы:

Пример 3: Решение : преобразуем функцию: . Учитывая правило раскрытия модуля и тот факт, что , перепишем функцию в кусочном виде:


Исследуем функцию на непрерывность.

1) Функция не определена в точке .


Односторонние пределы конечны и различны, значит, функция терпит разрыв 1-го рода со скачком в точке . Выполним чертёж:

Ответ : функция непрерывна на всей числовой прямой кроме точки , в которой она терпит разрыв первого рода со скачком. Скачок разрыва: (две единицы вверх).

Пример 5: Решение : каждая из трёх частей функции непрерывна на своём интервале.
I)
1)

2) Вычислим односторонние пределы:


, значит, общий предел существует.
3) - предел функции в точке равен значению данной функции в данной точке.
Таким образом, функция непрерывна в точке по определению непрерывности функции в точке.
II) Исследуем на непрерывность точку

1) - функция определена в данной точке. функция терпит разрыв 2-го рода, в точке

Как найти область определения функции?

Примеры решений

Если где-то нет чего-то, значит, где-то что-то есть

Продолжаем изучение раздела «Функции и графики», и следующая станция нашего путешествия - Область определения функции . Активное обсуждение данного понятия началось на первом же уроке о графиках функций , где я рассмотрел элементарные функции, и, в частности, их области определения. Поэтому чайникам рекомендую начать с азов темы, поскольку я не буду вновь останавливаться на некоторых базовых моментах.

Предполагается, читатель знает области определения основных функций: линейной, квадратичной, кубической функции, многочленов, экспоненты, логарифма, синуса, косинуса. Они определены на . За тангенсы, арксинусы, так и быть, прощаю =) Более редкие графики запоминаются далеко не сразу.

Область определения - вроде бы вещь простая, и возникает закономерный вопрос, о чём же будет статья? На данном уроке я рассмотрю распространённые задачи на нахождение области определения функции. Кроме того, мы повторим неравенства с одной переменной , навыки решения которых потребуются и в других задачах высшей математики. Материал, к слову, весь школьный, поэтому будет полезен не только студентам, но и учащимся. Информация, конечно, не претендует на энциклопедичность, но зато здесь не надуманные «мёртвые» примеры, а жареные каштаны, которые взяты из настоящих практических работ.

Начнём с экспресс-вруба в тему. Коротко о главном: речь идёт о функции одной переменной . Её область определения - это множество значений «икс» , для которых существуют значения «игреков». Рассмотрим условный пример:

Область определения данной функции представляет собой объединение промежутков:
(для тех, кто позабыл: - значок объединения). Иными словами, если взять любое значение «икс» из интервала , или из , или из , то для каждого такого «икс» будет существовать значение «игрек».

Грубо говоря, где область определения - там есть график функции. А вот полуинтервал и точка «цэ» не входят в область определения, поэтому графика там нет.

Да, кстати, если что-нибудь не понятно из терминологии и/или содержания первых абзацев, таки лучше вернуться к статье Графики и свойства элементарных функций .

4.1. Основные теоретические сведения

Определение. Функция у = f (x ) называется непрерывной в точке х 0 , если эта функция определена в какой-нибудь окрестности точки х 0 и если

то есть бесконечно малому приращению аргумента в окрестности точки х 0 соответствует бесконечно малое приращение функции.

Определение. Функция у= f (x ) непрерывна в точке х 0 , если она определена в некоторой окрестности этой точки и если предел функции при стремлении независимой переменной х к х 0 существует и равен значению функции при х=х 0 , то есть

Определение. Пусть х х 0 , оставаясь все время слева от х 0 . Если при этом условии f (x ) стремится к пределу, то он называется левым пределом функции f (x ) в точке х 0 , то есть

Аналогично определяется и правый предел

Определение. Функция непрерывна в точке х 0 если:

    функция определена в точке х 0 ;

    существуют левый и правый пределы функции f (x ) при х х 0 ;

    все три числа 0 ), f (x 0 –0), f (x 0 +0) совпадают, то есть

Определение. Функция называется непрерывной на интервале, если она непрерывна в каждой его точке.

Теорема . Если две функции f (x ) и g (x ) определены в одном и том же

интервале и обе непрерывны в точке х 0 , то в той же точке будут непрерывны и функции

Теорема. Сложная функция, состоящая из конечного числа непрерывных функций, является непрерывной.

Все основные элементарные функции непрерывны в своей области определения.

Определение. Если в какой-либо точке х 0 функция не является непрерывной, то точка х 0 называется точкой разрыва функции, а сама функция – разрывной в этой точке.

Определение. Если в точке х 0 существует конечный lim f (x ) = А

(левосторонний и правосторонний пределы существуют, конечны и равны между собой), но он не совпадает со значением функции в точке, или же функция в точке не определена, то точка х 0 называется точкой устранимого разрыва. Принятое изображение точки устранимого разрыва представлено на рис. 1.

Определение. Точкой разрыва первого рода или точкой конечного разрыва называется такая точка х 0 , в которой функция имеет левый и правый конечные пределы, но они не равны между собой.

На рис. 2 приведено графическое представление разрыва функции первого рода в точке х 0

Определение. Если хотя бы один из пределов f (x 0 0) или f (x 0 + 0) не существует или бесконечен, то точка х 0 называется точкой разрыва, второго рода.

Графические представления разрывов функций второго рода в точке х 0 приведены на рис. 3 (а, б, в).

Приведенные выше определения непрерывности функции f (x ) в точке х 0

представлены на рис. 4, где отмечено, что основной посылкой при определении непрерывности функции (необходимым условием) в точке х 0 является то, что f (x ) определена в точке и ее окрестности.

Пример Исследовать на непрерывность, определить характер точек разрыва,

изобразить в окрестности точек разрыва функцию

Это рациональная функция Она определена и непрерывна при всех значениях х, кроме х = 1, так как при х = 1 знаменатель обращается, в нуль. В точке х = 1 функция терпит разрыв. Вычислим предел этой функции при

х → 1, имеем

Конечный предел функции при х → 1 существует, а функция в точке

х = 1 не определена; значит точка х = 1 является точкой устранимого разрыва.

Если доопределить функцию, то есть положить f (1) = 5, то функция

будет непрерывной.

х = 1 изображено на рис. 4.

Замечание. Данная функция

неопределенная при х = 1, совпадает с непрерывной функцией

во всех точках кроме х =1

Исследовать на непрерывность функцию и определить характер ее точек разрыва

Область определения функции – вся числовая ось. На интервалах(–, 0), (0,+) функция непрерывна. Разрыв возможен только в точке х = 0, в которой изменяется аналитическое задание функции.

Найдем односторонние пределы функции:

Левый и правый пределы хотя и конечны, но не равны между собой. Поэтому в точке х = 0 функция имеет разрыв первого рода. Скачок функции в точке разрыва равен

Поведение функции в окрестности точки х = 0 изображено на рис. 5.

Рис. 5

Пример Исследовать функцию f (x ) на непрерывность, определить характер ее точек разрыва, изобразить ее поведение в окрестности точек разрыва.

Функция определена и непрерывна на всей числовой оси, кроме точек х , = –2 и х 2 = 2, причем

не существует.

Вычисляем односторонние пределы в точке х , = –2.

Итак, в точке х = – 2 функция терпит разрыв второго рода. Исследуем характер разрыва функции в точке х 2 = 2. Имеем

В точке х 2 = 2 функция также терпит разрыв второго рода.

Поведение функции в окрестности точек х х = 2 и х 2 = 2 изображено на рис. 6.

Исследовать функцию f (x ) = e x + i на непрерывность, определить характер точек разрыва, изобразить поведение функции в окрестности точек разрыва.

Функция неопределена прих = –3, поэтому функция
непрерывна при всех
кромех = –3. Определим характер разрыва функции. Имеем

то есть один из пределов равен бесконечности, а значит функция терпит разрыв

второго рода.

Поведение функции f (x ) = e x +3 в окрестности точки разрыва х = –3 изображено на рис. 7

4.2. Упражнения для самостоятельной работы студентов

1. Исследовать функции на непрерывность, определить характер их точек разрыва, изобразить графически поведение функций в окрестности































2. Исследовать функции на непрерывность, определить характер их точек разрыва, изобразить графически поведение функций в окрестности точек разрыва

Непрерывность функции. Точки разрыва.

Идет бычок, качается, вздыхает на ходу:
– Ох, доска кончается, сейчас я упаду!

На данном уроке мы разберём понятие непрерывности функции, классификацию точек разрыва и распространённую практическую задачу исследования функции на непрерывность . Из самого названия темы многие интуитивно догадываются, о чём пойдёт речь, и думают, что материал довольно простой. Это правда. Но именно несложные задачи чаще всего наказывают за пренебрежение и поверхностный подход к их решению. Поэтому рекомендую очень внимательно изучить статью и уловить все тонкости и технические приёмы.

Что нужно знать и уметь? Не очень-то и много. Для качественного усвоения урока необходимо понимать, что такое предел функции . Читателям с низким уровнем подготовки достаточно осмыслить статью Пределы функций. Примеры решений и посмотреть геометрический смысл предела в методичке Графики и свойства элементарных функций . Также желательно ознакомиться с геометрическими преобразованиями графиков , поскольку практика в большинстве случаев предполагает построение чертежа. Перспективы оптимистичны для всех, и даже полный чайник сумеет самостоятельно справиться с задачей в ближайший час-другой!

Непрерывность функции. Точки разрыва и их классификация

Понятие непрерывности функции

Рассмотрим некоторую функцию , непрерывную на всей числовой прямой:

Или, говоря лаконичнее, наша функция непрерывна на (множестве действительных чисел).

Каков «обывательский» критерий непрерывности? Очевидно, что график непрерывной функции можно начертить, не отрывая карандаша от бумаги.

При этом следует чётко отличать два простых понятия: область определения функции и непрерывность функции . В общем случае это не одно и то же . Например:

Данная функция определена на всей числовой прямой, то есть для каждого значения «икс» существует своё значение «игрека» . В частности, если , то . Заметьте, что другая точка выколота, ведь по определению функции, значению аргумента должно соответствовать единственное значение функции. Таким образом, область определения нашей функции: .

Однако эта функция не является непрерывной на ! Совершенно очевидно, что в точке она терпит разрыв . Термин тоже вполне вразумителен и нагляден, действительно, карандаш здесь по любому придётся оторвать от бумаги. Немного позже мы рассмотрим классификацию точек разрыва.

Непрерывность функции в точке и на интервале

В той или иной математической задаче речь может идти о непрерывности функции в точке, непрерывности функции на интервале, полуинтервале или непрерывности функции на отрезке. То есть, не существует «просто непрерывности» – функция может быть непрерывной ГДЕ-ТО. И основополагающим «кирпичиком» всего остального является непрерывность функции в точке .

Теория математического анализа даёт определение непрерывности функции в точке с помощью «дельта» и «эпсилон» окрестностей, но на практике в ходу другое определение, которому мы и уделим самое пристальное внимание.

Сначала вспомним односторонние пределы , ворвавшиеся в нашу жизнь на первом уроке о графиках функций . Рассмотрим будничную ситуацию:

Если приближаться по оси к точке слева (красная стрелка), то соответствующие значения «игреков» будут идти по оси к точке (малиновая стрелка). Математически данный факт фиксируется с помощью левостороннего предела :

Обратите внимание на запись (читается «икс стремится к ка слева»). «Добавка» «минус ноль» символизирует , по сути это и обозначает, что мы подходим к числу с левой стороны.

Аналогично, если приближаться к точке «ка» справа (синяя стрелка), то «игреки» придут к тому же значению , но уже по зелёной стрелке, и правосторонний предел оформится следующим образом:

«Добавка» символизирует , и запись читается так: «икс стремится к ка справа».

Если односторонние пределы конечны и равны (как в нашем случае): , то будем говорить, что существует ОБЩИЙ предел . Всё просто, общий предел – это наш «обычный» предел функции , равный конечному числу.

Заметьте, что если функция не определена при (выколите чёрную точку на ветке графика), то перечисленные выкладки остаются справедливыми. Как уже неоднократно отмечалось, в частности, в статье о бесконечно малых функциях , выражения означают, что «икс» бесконечно близко приближается к точке , при этом НЕ ИМЕЕТ ЗНАЧЕНИЯ , определена ли сама функция в данной точке или нет. Хороший пример встретится в следующем параграфе, когда анализу подвергнется функция .

Определение : функция непрерывна в точке , если предел функции в данной точке равен значению функции в этой точке: .

Определение детализируется в следующих условиях:

1) Функция должна быть определена в точке , то есть должно существовать значение .

2) Должен существовать общий предел функции . Как отмечалось выше, это подразумевает существование и равенство односторонних пределов: .

3) Предел функции в данной точке должен быть равен значению функции в этой точке: .

Если нарушено хотя бы одно из трёх условий, то функция теряет свойство непрерывности в точке .

Непрерывность функции на интервале формулируется остроумно и очень просто: функция непрерывна на интервале , если она непрерывна в каждой точке данного интервала.

В частности, многие функции непрерывны на бесконечном интервале , то есть на множестве действительных чисел . Это линейная функция, многочлены, экспонента, синус, косинус и др. И вообще, любая элементарная функция непрерывна на своей области определения , так, например, логарифмическая функция непрерывна на интервале . Надеюсь, к данному моменту вы достаточно хорошо представляете, как выглядят графики основных функций. Более подробную информацию об их непрерывности можно почерпнуть у доброго человека по фамилии Фихтенгольц.

С непрерывностью функции на отрезке и полуинтервалах тоже всё несложно, но об этом уместнее рассказать на уроке о нахождении минимального и максимального значений функции на отрезке , а пока голову забивать не будем.

Классификация точек разрыва

Увлекательная жизнь функций богата всякими особенными точками, и точки разрыва лишь одна из страничек их биографии.

Примечание : на всякий случай остановлюсь на элементарном моменте: точка разрыва – это всегда отдельно взятая точка – не бывает «несколько точек разрыва подряд», то есть, нет такого понятия, как «интервал разрывов».

Данные точки в свою очередь подразделяются на две большие группы: разрывы первого рода и разрывы второго рода . У каждого типа разрыва есть свои характерные особенности, которые мы рассмотрим прямо сейчас:

Точка разрыва первого рода

Если в точке нарушено условие непрерывности и односторонние пределы конечны , то она называется точкой разрыва первого рода .

Начнём с самого оптимистичного случая. По первоначальной задумке урока я хотел рассказать теорию «в общем виде», но чтобы продемонстрировать реальность материала, остановился на варианте с конкретными действующими лицами.

Уныло, как фото молодожёнов на фоне Вечного огня, но нижеследующий кадр общепринят. Изобразим на чертеже график функции :


Данная функция непрерывна на всей числовой прямой, кроме точки . И в самом деле, знаменатель же не может быть равен нулю. Однако в соответствии со смыслом предела – мы можем бесконечно близко приближаться к «нулю» и слева и справа, то есть, односторонние пределы существуют и, очевидно, совпадают:
(Условие №2 непрерывности выполнено).

Но функция не определена в точке , следовательно, нарушено Условие №1 непрерывности, и функция терпит разрыв в данной точке.

Разрыв такого вида (с существующим общим пределом ) называют устранимым разрывом . Почему устранимым? Потому что функцию можно доопределить в точке разрыва:

Странно выглядит? Возможно. Но такая запись функции ничему не противоречит! Теперь разрыв устранён и все счастливы:


Выполним формальную проверку:

2) – общий предел существует;
3)

Таким образом, все три условия выполнены, и функция непрерывна в точке по определению непрерывности функции в точке.

Впрочем, ненавистники матана могут доопределить функцию нехорошим способом, например :


Любопытно, что здесь выполнены первые два условия непрерывности:
1) – функция определена в данной точке;
2) – общий предел существует.

Но третий рубеж не пройден: , то есть предел функции в точке не равен значению данной функции в данной точке.

Таким образом, в точке функция терпит разрыв.

Второй, более грустный случай носит название разрыва первого рода со скачком . А грусть навевают односторонние пределы, которые конечны и различны . Пример изображён на втором чертеже урока. Такой разрыв возникает, как правило, в кусочно-заданных функциях , о которых уже упоминалось в статье о преобразованиях графиков .

Рассмотрим кусочную функцию и выполним её чертёж. Как построить график? Очень просто. На полуинтервале чертим фрагмент параболы (зеленый цвет), на интервале – отрезок прямой (красный цвет) и на полуинтервале – прямую (синий цвет).

При этом в силу неравенства значение определено для квадратичной функции (зелёная точка), и в силу неравенства , значение определено для линейной функции (синяя точка):

В самом-самом тяжёлом случае следует прибегнуть к поточечному построению каждого куска графика (см. первый урок о графиках функций ).

Сейчас нас будет интересовать только точка . Исследуем её на непрерывность:

2) Вычислим односторонние пределы.

Слева у нас красный отрезок прямой, поэтому левосторонний предел:

Справа – синяя прямая, и правосторонний предел:

В результате получены конечные числа , причем они не равны . Поскольку односторонние пределы конечны и различны : , то наша функция терпит разрыв первого рода со скачком .

Логично, что разрыв не устраним – функцию действительно не доопределить и «не склеить», как в предыдущем примере.

Точки разрыва второго рода

Обычно к данной категории хитро относят все остальные случаи разрыва. Всё перечислять не буду, поскольку на практике в 99%-ти процентах задач вам встретится бесконечный разрыв – когда левосторонний или правосторонний, а чаще, оба предела бесконечны.

И, конечно же, самая напрашивающаяся картинка – гипербола в точке ноль. Здесь оба односторонних предела бесконечны: , следовательно, функция терпит разрыв второго рода в точке .

Я стараюсь наполнять свои статьи максимально разнообразным содержанием, поэтому давайте посмотрим на график функции , который ещё не встречался:

по стандартной схеме:

1) Функция не определена в данной точке, поскольку знаменатель обращается в ноль.

Конечно, можно сразу сделать вывод о том, что функция терпит разрыв в точке , но хорошо бы классифицировать характер разрыва, что часто требуется по условию. Для этого:



Напоминаю, что под записью понимается бесконечно малое отрицательное число , а под записью – бесконечно малое положительное число .

Односторонние пределы бесконечны, значит, функция терпит разрыв 2-го рода в точке . Ось ординат является вертикальной асимптотой для графика.

Не редка ситуация, когда оба односторонних предела существуют, но бесконечен только один из них, например:

Это график функции .

Исследуем на непрерывность точку :

1) Функция не определена в данной точке.

2) Вычислим односторонние пределы:

О методике вычисления таких односторонних пределов поговорим в двух последних примерах лекции, хотя многие читатели всё уже увидели и догадались.

Левосторонний предел конечен и равен нулю (в саму точку мы «не заходим»), но правосторонний предел бесконечен и оранжевая ветка графика бесконечно близко приближается к своей вертикальной асимптоте , заданной уравнением (чёрный пунктир).

Таким образом, функция терпит разрыв второго рода в точке .

Как и для разрыва 1-го рода, в самой точке разрыва функция может быть определена. Например, для кусочной функции смело ставим чёрную жирную точку в начале координат. Справа же – ветка гиперболы, и правосторонний предел бесконечен. Думаю, почти все представили, как выглядит этот график.

То, чего все с нетерпением ждали:

Как исследовать функцию на непрерывность?

Исследование функции на непрерывность в точке проводится по уже накатанной рутинной схеме, которая состоит в проверке трёх условий непрерывности:

Пример 1

Исследовать функцию

Решение :

1) Под прицел попадает единственная точка , в которой функция не определена.

2) Вычислим односторонние пределы:

Односторонние пределы конечны и равны.

Таким образом, в точке функция терпит устранимый разрыв.

Как выглядит график данной функции?

Хочется провести упрощение , и вроде бы получается обычная парабола. НО исходная функция не определена в точке , поэтому обязательна следующая оговорка:

Выполним чертёж:

Ответ : функция непрерывна на всей числовой прямой кроме точки , в которой она терпит устранимый разрыв.

Функцию можно доопределить хорошим или не очень способом, но по условию этого не требуется.

Вы скажете, пример надуманный? Ничуть. Десятки раз встречалось на практике. Почти все задачи сайта родом из реальных самостоятельных и контрольных работ.

Разделаемся с любимыми модулями:

Пример 2

Исследовать функцию на непрерывность. Определить характер разрывов функции, если они существуют. Выполнить чертёж.

Решение : почему-то студенты боятся и не любят функции с модулем, хотя ничего сложного в них нет. Таких вещей мы уже немного коснулись на уроке Геометрические преобразования графиков . Поскольку модуль неотрицателен, то он раскрывается следующим образом: , где «альфа» – некоторое выражение. В данном случае , и наша функция должна расписаться кусочным образом:

Но дроби обоих кусков предстоит сократить на . Сокращение, как и в предыдущем примере, не пройдёт без последствий. Исходная функция не определена в точке , так как знаменатель обращается в ноль. Поэтому в системе следует дополнительно указать условие , и первое неравенство сделать строгим:

Теперь об ОЧЕНЬ ПОЛЕЗНОМ приёме решения : перед чистовым оформлением задачи на черновике выгодно сделать чертёж (независимо от того, требуется он по условию или нет). Это поможет, во-первых, сразу увидеть точки непрерывности и точки разрыва, а, во-вторых, 100%-но убережёт от ошибок при нахождении односторонних пределов.

Выполним чертёж. В соответствии с нашими выкладками, слева от точки необходимо начертить фрагмент параболы (синий цвет), а справа – кусок параболы (красный цвет), при этом функция не определена в самой точке :

Если есть сомнения, возьмите несколько значений «икс», подставьте их в функцию (не забывая, что модуль уничтожает возможный знак «минус») и сверьтесь с графиком.

Исследуем функцию на непрерывность аналитически:

1) Функция не определена в точке , поэтому сразу можно сказать, что не является в ней непрерывной.

2) Установим характер разрыва, для этого вычислим односторонние пределы:

Односторонние пределы конечны и различны, значит, функция терпит разрыв 1-го рода со скачком в точке . Ещё раз заметьте, что при нахождении пределов не имеет значения, определена функция в точке разрыва или нет.

Теперь остаётся перенести чертёж с черновика (он сделан как бы с помощью исследования;-)) и завершить задание:

Ответ : функция непрерывна на всей числовой прямой кроме точки , в которой она терпит разрыв первого рода со скачком.

Иногда требуют дополнительно указать скачок разрыва. Вычисляется он элементарно – из правого предела нужно вычесть левый предел: , то есть в точке разрыва наша функция прыгнула на 2 единицы вниз (о чём нам сообщает знак «минус»).

Пример 3

Исследовать функцию на непрерывность. Определить характер разрывов функции, если они существуют. Сделать чертёж.

Это пример для самостоятельного решения, примерный образец решения в конце урока.

Перейдём к наиболее популярной и распространённой версии задания, когда функция состоит из трёх кусков:

Пример 4

Исследовать функцию на непрерывность и построить график функции .

Решение : очевидно, что все три части функции непрерывны на соответствующих интервалах, поэтому осталось проверить только две точки «стыка» между кусками. Сначала выполним чертёж на черновике, технику построения я достаточно подробно закомментировал в первой части статьи. Единственное, необходимо аккуратно проследить за нашими особенными точками: в силу неравенства значение принадлежит прямой (зелёная точка), и в силу неравенство значение принадлежит параболе (красная точка):


Ну вот, в принципе, всё понятно =) Осталось оформить решение. Для каждой из двух «стыковых» точек стандартно проверяем 3 условия непрерывности:

I) Исследуем на непрерывность точку

1)



Односторонние пределы конечны и различны, значит, функция терпит разрыв 1-го рода со скачком в точке .

Вычислим скачок разрыва как разность правого и левого пределов:
, то есть, график рванул на одну единицу вверх.

II) Исследуем на непрерывность точку

1) – функция определена в данной точке.

2) Найдём односторонние пределы:

– односторонние пределы конечны и равны, значит, существует общий предел.

3) – предел функции в точке равен значению данной функции в данной точке.

На завершающем этапе переносим чертёж на чистовик, после чего ставим финальный аккорд:

Ответ : функция непрерывна на всей числовой прямой, кроме точки , в которой она терпит разрыв первого рода со скачком.

Пример 5

Исследовать функцию на непрерывность и построить её график .

Это пример для самостоятельного решения, краткое решение и примерный образец оформления задачи в конце урока.

Может сложиться впечатление, что в одной точке функция обязательно должна быть непрерывной, а в другой – обязательно должен быть разрыв. На практике это далеко не всегда так. Постарайтесь не пренебрегать оставшимися примерами – будет несколько интересных и важных фишек:

Пример 6

Дана функция . Исследовать функцию на непрерывность в точках . Построить график.

Решение : и снова сразу выполним чертёж на черновике:

Особенность данного графика состоит в том, что при кусочная функция задаётся уравнением оси абсцисс . Здесь данный участок прорисован зелёным цветом, а в тетради его обычно жирно выделяют простым карандашом. И, конечно же, не забываем про наших баранов: значение относится к ветке тангенса (красная точка), а значение принадлежит прямой .

Из чертежа всё понятно – функция непрерывна на всей числовой прямой, осталось оформить решение, которое доводится до полного автоматизма буквально после 3-4 подобных примеров:

I) Исследуем на непрерывность точку

1) – функция определена в данной точке.

2) Вычислим односторонние пределы:

, значит, общий предел существует.

На всякий пожарный напомню тривиальный факт: предел константы равен самой константе. В данном случае предел нуля равен самому нулю (левосторонний предел).

3) – предел функции в точке равен значению данной функции в данной точке.

Таким образом, функция непрерывна в точке по определению непрерывности функции в точке.

II) Исследуем на непрерывность точку

1) – функция определена в данной точке.

2) Найдём односторонние пределы:

И здесь – предел единицы равен самой единице.

– общий предел существует.

3) – предел функции в точке равен значению данной функции в данной точке.

Таким образом, функция непрерывна в точке по определению непрерывности функции в точке.

Как обычно, после исследования переносим наш чертёж на чистовик.

Ответ : функция непрерывна в точках .

Обратите внимание, что в условии нас ничего не спрашивали про исследование всей функции на непрерывность, и хорошим математическим тоном считается формулировать точный и чёткий ответ на поставленный вопрос. Кстати, если по условию не требуется строить график, то вы имеете полное право его и не строить (правда, потом преподаватель может заставить это сделать).

Небольшая математическая «скороговорка» для самостоятельного решения:

Пример 7

Дана функция . Исследовать функцию на непрерывность в точках . Классифицировать точки разрыва, если они есть. Выполнить чертёж.

Постарайтесь правильно «выговорить» все «слова» =) И график нарисовать поточнее, точность, она везде лишней не будет;-)

Как вы помните, я рекомендовал незамедлительно выполнять чертёж на черновике, но время от времени попадаются такие примеры, где не сразу сообразишь, как выглядит график. Поэтому в ряде случаев выгодно сначала найти односторонние пределы и только потом на основе исследования изобразить ветви. В двух заключительных примерах мы, кроме того, освоим технику вычисления некоторых односторонних пределов:

Пример 8

Исследовать на непрерывность функцию и построить её схематический график.

Решение : нехорошие точки очевидны: (обращает в ноль знаменатель показателя) и (обращает в ноль знаменатель всей дроби). Малопонятно, как выглядит график данной функции, а значит, сначала лучше провести исследование.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ