Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Высокие скоростные характеристики и амфибийные возможности аппаратов, передвигающихся на воздушной подушке (АВП), а также сравнительная простота их конструкций привлекают внимание конструкторов-любителей. В последние годы появилось немало небольших АВП, построенных самостоятельно и используемых для спорта, туризма или хозяйственных разъездов.

В некоторых странах, например в Великобритании, США и Канаде, налажено серийное промышленное производство малых АВП; предлагаются готовые аппараты либо наборы деталей для самостоятельной сборки.

Типичный спортивный АВП компактен, прост по конструкции, имеет независимые друг от друга системы подъема и движения, легко передвигается как над землей, так и над водой. Это преимущественно одноместные аппараты с карбюраторными мотоциклетными или легкими автомобильными двигателями воздушного охлаждения.

Туристские АВП более сложны по конструкции. Обычно они двух- или четырехместные, предназначены для сравнительно длительных путешествий и соответственно имеют багажники, топливные баки большой емкости, приспособления для защиты пассажиров от непогоды.


Для хозяйственных целей используются небольшие платформы, приспособленные для транспортировки преимущественно сельскохозяйственных грузов по пересеченной и болотистой местности.

Основные характеристики

Любительские АВП характеризуются главными размерениями, массой, диаметром нагнетателя и воздушного винта, расстоянием от центра массы АВП до центра его аэродинамического сопротивления.

В табл. 1 сопоставляются важнейшие технические данные наиболее популярных английских любительских АВП. Таблица позволяет ориентироваться в широком диапазоне значений отдельных параметров и использовать их для сравнительного анализа с собственными проектами.


Самые легкие АВП имеют массу около 100 кг, самые тяжелые - более 1000 кг. Естественно, чем меньше масса аппарата, тем меньшая требуется мощность двигателя для его движения или тем более высокие эксплуатационные качества могут быть достигнуты при той же потребляемой мощности.

Ниже приводятся наиболее характерные данные о массе отдельных узлов, составляющих общую массу любительского АВП: карбюраторный двигатель с воздушным охлаждением - 20-70 кг; осевой нагнетатель. (насос) - 15 кг, центробежный насос - 20 кг; воздушный винт - 6-8 кг; рама мотора - 5-8 кг; трансмиссия - 5-8 кг; кольцо-насадка воздушного винта - 3-5 кг; органы управления - 5-7 кг; корпус - 50-80 кг; топливные баки и бензопроводы - 5-8 кг; сиденье - 5 кг.

Общая грузоподъемность определяется расчетом в зависимости от числа пассажиров, заданного количества перевозимого груза, запасов топлива и масла, необходимых для обеспечения требуемой дальности плавания.

Параллельно с расчетом массы АВП требуется точный расчет положения центра тяжести, поскольку от этого зависят ходовые качества, остойчивость и управляемость аппарата. Главным условием является то, чтобы равнодействующая сил поддержания воздушной подушки проходила через общий центр тяжести (ЦТ) аппарата. При этом необходимо учитывать, что все массы, изменяющие свою величину в процессе эксплуатации (такие, например, как горючее, пассажиры, грузы), должны быть размещены вблизи от ЦТ аппарата, чтобы не вызывать его перемещения.

Центр тяжести аппарата определяется расчетом по чертежу боковой проекции аппарата, где наносят центры тяжести отдельных агрегатов, узлов конструкции пассажиров и грузов (рис. 1). Зная массы G i и координаты (относительно осей координат) x i и y i их центров тяжести, можно определить положение ЦТ всего аппарата по формулам:


Проектируемый любительский АВП должен соответствовать определенным эксплуатационным, конструктивным и технологическим требованиям. Основой для создания проекта и конструкции нового типа АВП являются, прежде всего, исходные данные и технические условия, которые определяют тип аппарата, его назначение, полную массу, грузоподъемность, габариты, тип главной энергетической установки, ходовые характеристики и специфические особенности.

От туристских и спортивных АВП, как, впрочем, и от других типов любительских АВП, требуется простота изготовления, использование в конструкции легкодоступных материалов и агрегатов, а также полная безопасность эксплуатации.

Говоря о ходовых характеристиках, подразумевают высоту парения АВП и связанную с этим качеством способность преодоления препятствий, максимальную скорость и приемистость, а также длину тормозного пути, остойчивость, управляемость, дальность хода.

В конструкции АВП принципиальную роль играет форма корпуса (рис. 2), которая является компромиссом между:

  • а) круглыми в плане обводами, которые характеризуются наилучшими параметрами воздушной подушки в момент зависания на месте;
  • б) каплевидной формой обводов, которая предпочтительнее с точки зрения снижения аэродинамического сопротивления при движении;
  • в) заостренной в носу ("клювообразной") формой корпуса, оптимальной с гидродинамической точки зрения во время движения по взволнованной поверхности воды;
  • г) формой, оптимальной для эксплуатационных целей.
Соотношения между длиной и шириной корпусов любительских АВП варьируются в пределах L:В=1,5÷2,0.

Используя статистические данные по существующим конструкциям, которые соответствуют вновь создаваемому типу АВП, конструктор должен установить:

  • массу аппарата G, кг;
  • площадь воздушной подушки S, м 2 ;
  • длину, ширину и очертания корпуса в плане;
  • мощность двигателя подъемной системы N в.п. , кВт;
  • мощность тягового двигателя N дв, КВТ.
Эти данные позволяют вычислить удельные показатели:
  • давление в воздушной подушке P в.п. = G:S;
  • удельную мощность подъемной системы q в.п. = G:N в.п. .
  • удельную мощность тягового двигателя q дв = G:N дв, а также начать разработку конфигурации АВП.

Принцип создания воздушной подушки, нагнетатели

Наиболее часто при постройке любительских АВП используются две схемы образования воздушной подушки: камерная и сопловая.

В камерной схеме, используемой чаще всего в простых конструкциях, объемный расход воздуха, проходящего через воздушный тракт аппарата, равен объемному расходу воздуха нагнетателя


где:
F - площадь периметра зазора между опорной поверхностью и нижней кромкой корпуса аппарата, через который воздух выходит из-под аппарата, м 2 ; ее можно определить как произведение периметра ограждения воздушной подушки Р на величину зазора h e между ограждением и опорной поверхностью; обычно h 2 = 0,7÷0,8h, где h - высота парения аппарата, м;

υ - скорость истечения воздуха из-под аппарата; с достаточной точностью ее можно рассчитать по формуле:


где Р в.п. - давление в воздушной подушке, Па; g - ускорение свободного падения, м/с 2 ; у - плотность воздуха, кг/м 3 .

Мощность, необходимая для создания воздушной подушки в камерной схеме, определяется по приближенной формуле:


где Р в.п. - давление за нагнетателем (в ресивере), Па; η н - коэффициент полезного действия нагнетателя.

Давление в воздушной подушке и расход воздуха - основные параметры воздушной подушки. Их величины зависят прежде всего от размеров аппарата, т. е. от массы и несущей поверхности, от высоты парения, скорости движения, способа создания воздушной подушки и сопротивления в воздушном тракте.

Наиболее экономичные аппараты на воздушной подушке - это АВП больших размеров или больших несущих поверхностей, при которых минимальное давление в подушке позволяет получить достаточно большую грузоподъемность. Однако самостоятельная постройка аппарата больших размеров связана с трудностями транспортировки и хранения, а также ограничивается финансовыми возможностями конструктора-любителя. При уменьшении размеров АВП требуется значительное повышение давления в воздушной подушке и, соответственно, увеличение потребляемой мощности.

От давления в воздушной подушке и скорости истечения воздуха из-под аппарата зависят, в свою очередь, негативные явления: забрызгивание во время движения над водой и запыление - при движении над песчаной поверхностью либо сыпучим снегом.

По-видимому, удачная конструкция АВП является в известном смысле компромиссом между описанными выше противоречивыми зависимостями.

Чтобы снизить затраты мощности на прохождение воздуха через воздушный канал от нагнетателя в полость подушки, он должен обладать минимальным аэродинамическим сопротивлением (рис. 3). Потерн мощности, неизбежные при прохождении воздуха по каналам воздушного тракта, бывают двоякого рода: потерн на движение воздуха в прямых каналах постоянного сечения и местные потери - при расширении и изгибах каналов.

В воздушном тракте небольших любительских АВП потери на движение воздушных потоков вдоль прямых каналов постоянного сечения относительно невелики вследствие незначительной протяженности этих каналов, а также тщательности обработки их поверхности. Эти потери можно оценить по формуле:


где: λ - коэффициент потерь давления на длину канала, рассчитанный по графику, представленному на рис. 4, в зависимости от числа Рейнольдса Re=(υ·d):v, υ - скорость прохождения воздуха в канале, м/с; l - длина канала, м; d - диаметр канала, м (если канал имеет отличное от круглого сечение, то d - диаметр эквивалентного по площади поперечного сечения цилиндрического канала); v - коэффициент кинематической вязкости воздуха, м 2 /с.

Местные потери мощности, связанные с сильным увеличением либо уменьшением сечения каналов и значительными изменениями направления потока воздуха, а также потери на всасывание воздуха в нагнетатель, сопла и к рулям составляют основные затраты мощности нагнетателя.


Здесь ζ м - коэффициент местных потерь, зависящий от числа Рейнольдса, которое определяется геометрическими параметрами источника потерь и скоростью прохождения воздуха (рис. 5-8).

Нагнетатель в АВП должен создавать определенное давление воздуха в воздушной подушке с учетом затрат мощности на преодоление сопротивления каналов воздушному потоку. В некоторых случаях часть воздушного потока используется и для образования горизонтальной тяги аппарата с целью обеспечения движения.

Полное давление, создаваемое нагнетателем, складывается из статического и динамического давлений:


В зависимости от типа АВП, площади воздушной подушки, высоты подъема аппарата и величины потерь составляющие компоненты p sυ и p dυ варьируются. Это определяет выбор типа и производительность нагнетателей.

В камерной схеме воздушной подушки статическое давление p sυ , необходимое для создания подъемной силы, можно приравнять к статическому давлению за нагнетателем, мощность которого определяется по формуле, приведенной выше.

При расчете потребной мощности нагнетателя АВП с гибким ограждением воздушной подушки (сопловая схема) статическое давление за нагнетателем можно рассчитать по приближенной формуле:


где: Р в.п. - давление в воздушной подушке под днищем аппарата, кг/м 2 ; kp - коэффициент перепада давления между воздушной подушкой и каналами (ресивером), равный k p =Р р:Р в.п. (Р р - давление в воздушных каналах за нагнетателем). Величина k p колеблется в пределах 1,25÷1,5.

Объемный расход воздуха нагнетателя можно рассчитать по формуле:


Регулировка производительности (расхода) нагнетателей АВП осуществляется чаще всего - путем изменения частоты вращения либо (реже) путем дросселирования потока воздуха в каналах при помощи находящихся в них поворотных заслонок.

После того как рассчитана необходимая мощность нагнетателя, необходимо найти для него двигатель; чаще всего любители используют мотоциклетные двигатели, если требуется мощность до 22 кВт. При этом в качестве расчетной мощности принимается 0,7-0,8 максимальной мощности двигателя, указываемой в паспорте мотоцикла. Необходимо предусмотреть интенсивное охлаждение двигателя и тщательную очистку воздуха, поступающего через карбюратор. Важно также получить установку с минимальной массой, которая складывается из массы двигателя, передачи между нагнетателем и двигателем, а также массы самого нагнетателя.

В зависимости от типа АВП применяются двигатели с рабочим объемом от 50 до 750 см 3 .

В любительских АВП применяются в равной степени как осевые нагнетатели, так и центробежные. Осевые нагнетатели предназначаются для небольших я несложных конструкций, центробежные - для АВП со значительным давлением в воздушной подушке.

Осевые нагнетатели, как правило, имеют четыре лопасти или больше (рис. 9). Их обычно изготовляют из дерева (четырехлопастные) или металла (нагнетатели с большим количеством лопастей). Если они из алюминиевых сплавов, то роторы можно отлить, а также применить сварку; можно сделать их сварной конструкции из стального листа. Диапазон давления, создаваемого осевыми четырехлопастными нагнетателями, составляет 600-800 Па (около 1000 Па с большим числом лопастей); КПД этих нагнетателей достигает 90%.

Центробежные нагнетатели делают сварной конструкции из металла или формуют из стеклопластика. Лопасти изготовляют гнутыми из тонкого листа либо с профилированным поперечным сечением. Центробежные нагнетатели создают давление до 3000 Па, а КПД их достигает 83%.

Выбор тягового комплекса

Движители, создающие горизонтальную тягу, можно разделить в основном на три типа: воздушный, водяной и колесный (рис. 10).

Под воздушным движителем понимается воздушный винт авиационного типа в кольце-насадке или без него, осевой или центробежный нагнетатель, а также воздушно-реактивный движитель. В простейших конструкциях горизонтальную тягу иногда можно создать с помощью наклона АВП и использования появляющейся при этом горизонтальной составляющей силы воздушного потока, истекающего из воздушной подушки. Воздушный движитель удобен для амфибийных аппаратов, не имеющих контакта с опорной поверхностью.

Если речь идет об АВП, передвигающихся только над поверхностью воды, то можно применить гребной винт или водометный движитель. По сравнению с воздушными эти движители позволяют получить значительно большую тягу на каждый киловатт затраченной мощности.

Ориентировочное значение тяги, развиваемой различными движителями, можно оценить по данным, приведенным на рис. 11.

При выборе элементов воздушного винта следует учитывать все виды сопротивления, возникающие в процессе движения АВП. Аэродинамическое сопротивление рассчитывается по формуле


Сопротивление воды, обусловленное образованием волн при движении АВП по воде, можно вычислить по формуле


где:

V - скорость движения АВП, м/с; G - масса АВП, кг; L - длина воздушной подушки, м; ρ - плотность воды, кг·с 2 /м 4 (при температуре морской воды +4°С равна 104, речной - 102);

С х - коэффициент аэродинамического сопротивления, зависящий от формы аппарата; определяется продувкой моделей АВП в аэродинамических трубах. Приближенно можно принять C x =0,3÷0,5;

S - площадь поперечного сечения АВП - его проекции на плоскость, перпендикулярную направлению движения, м 2 ;

Е - коэффициент волнового сопротивления, зависящий от скорости АВП (числа Фруда Fr=V:√ g·L) и соотношения размерений воздушной подушки L:B (рис. 12).

В качестве примера в табл. 2 приведен расчет сопротивления в зависимости от скорости движения для аппарата длиной L=2,83 м и В=1,41 м.


Зная сопротивление движению аппарата, можно вычислить мощность двигателя, необходимую для обеспечения его движения с заданной скоростью (в данном примере 120 км/ч), принимая КПД воздушного винта η р равным 0,6, а КПД передачи от двигателя на винт η п =0,9:
В качестве воздушного движителя для любительских АВП чаще всего применяется двухлопастной винт (рис. 13) .

Заготовка для такого винта может быть склеена из фанерных, ясеневых или сосновых пластин. Кромка, а также концы лопастей, которые подвергаются механическому воздействию твердых частиц или песка, всасываемых вместе с потоком воздуха, защищаются оковкой из листовой латуни.

Используются также и четырехлопастные винты. Количество лопастей зависит от условий эксплуатации и назначения винта - для развития.большой скорости или создания значительной силы тяги в момент старта. Достаточную силу тяги может обеспечить и двухлопастной винт с широкими лопастями. Сила тяги, как правило, повышается, если воздушный винт работает в профилированном кольце-насадке.

Готовый винт перед креплением на валу двигателя должен быть отбалансирован, главным образом - статически. В противном случае при его вращении возникают вибрации, которые могут привести к повреждению всего аппарата. Балансировка с точностью до 1 г для любителей вполне достаточна. Кроме балансировки винта проверяют его биение относительно оси вращения.

Общая компоновка

Одной из основных задач конструктора является соединение всех агрегатов в одно функциональное целое. Проектируя аппарат, конструктор обязан в пределах корпуса предусмотреть место для экипажа, размещения агрегатов подъемной и движительной систем. Важно при этом использовать в качестве прототипа конструкции уже известных АВП. На рис. 14 и 15 представлены конструктивные схемы двух типовых АВП любительской постройки.

В большинстве АВП корпус представляет собой несущий элемент, единую конструкцию. На нем находятся агрегаты главной энергетической установки, воздушные каналы, приборы управления и кабина водителя. Кабины водителей размешаются в носовой или центральной части аппарата в зависимости от того, где находится нагнетатель - за кабиной или перед нею. Если АВП - многоместный, кабина находится обычно в средней части аппарата, что позволяет эксплуатировать его с разным количеством людей на борту без изменения центровки.

В небольших любительских АВП место водителя чаще всего открытое, защищенное спереди ветровым стеклом. В аппаратах более сложной конструкции (туристского типа) кабины закрыты куполом из прозрачного пластика. Для размещения необходимого снаряжения и запасов используются объемы, имеющиеся по бортам кабины и под креслами.

При воздушных двигателях управление АВП осуществляется с помощью либо рулей, размещенных в потоке воздуха за винтом, либо направляющих устройств, укрепленных в потоке воздуха, истекающего из воздушно-реактивного движителя. Управление аппаратом с места водителя может быть авиационного типа - с помощью рукояток или рычагов руля управления, либо как в автомобиле - рулевым колесом и педалями.

В любительских АВП применяются два основных вида топливных систем; с подачей топлива самотеком и с бензонасосом автомобильного или авиационного типа. Детали топливной системы, такие, как клапаны, фильтры, масляная система вместе с бачками (если применяется четырехтактный двигатель), маслорадиаторы, фильтры, система водяного охлаждения (если это двигатель с водяным охлаждением), - подбираются обычно из существующих авиационных или автомобильных детален.

Выхлопные газы от двигателя всегда выводятся в кормовую часть аппарата и никогда - в подушку. Чтобы уменьшить шум, возникающий при эксплуатации АВП, особенно вблизи населенных пунктов, используются глушители автомобильного типа.

В простейших конструкциях нижняя часть корпуса служит в качестве шасси. Роль шасси могут выполнять деревянные полозья (или полоз), принимающие на себя нагрузку при соприкосновении с поверхностью. В туристских АВП, отличающихся большей массой, чем спортивные, монтируются колесные шасси, которые облегчают перемещение АВП во время стоянок. Обычно используются два колеса, установленных по бортам либо вдоль продольной оси АВП. Колеса имеют контакт с поверхностью лишь после прекращения работы подъемной системы, когда АВП касается поверхности.

Материалы и технология изготовления

Для изготовления АВП деревянной конструкции применяют высококачественные сосновые пиломатериалы, подобные используемым в авиастроении, а также березовую фанеру, ясеневую, буковую и липовую древесину. Для склеивания дерева применяют водостойкий клей с высокими физико-механическими качествами.

Для гибких ограждений преимущественно используют технические ткани; они должны быть исключительно прочными, устойчивыми к атмосферному влиянию и влажности, а также к трению, В Польше чаще всего используют огнестойкую ткань, покрытую пластиковидным полихлорвинилом.

Важно выполнить правильно раскрой и, обеспечить тщательное соединение полотнищ между собой, а также крепление их к аппарату. Для крепления оболочки гибкого ограждения к корпусу применяют металлические планки, которые посредством болтов равномерно прижимают ткань к корпусу аппарата.

Конструируя форму гибкого ограждения воздушной подушки, не следует забывать о законе Паскаля, который гласит: давление воздуха распространяется во всех направлениях с одинаковой силой. Поэтому оболочка гибкого ограждения в надутом состоянии должна иметь форму цилиндра или сферы либо их сочетания.

Конструкция и прочность корпуса

На корпус АВП передаются силы от груза, перевозимого аппаратом, вес механизмов силовой установки и т. д., а также действуют нагрузки от внешних сил, ударов днища о волну и от давления в воздушной подушке. Несущая конструкция корпуса любительского АВП чаще всего представляет собой плоский понтон, который поддерживается давлением в воздушной подушке, а в режиме плавания обеспечивает плавучесть корпуса. На корпус действуют сосредоточенные силы, изгибающие и крутящие моменты от двигателей (рис. 16), а также гироскопические моменты от вращающихся частей механизмов, возникающие при маневрировании АВП.

Наибольшее распространение получили два конструктивных типа корпусов любительских АВП (или их комбинации):

  • ферменной конструкции, когда общая прочность корпуса обеспечивается с помощью плоских или пространственных ферм, а обшивка предназначается только для удержания воздуха в воздушном тракте и создания объемов плавучести;
  • с несущей обшивкой, когда общая прочность корпуса обеспечивается наружной обшивкой, работающей совместно с продольным и поперечным набором.
Примером АВП с комбинированной схемой конструкции корпуса является спортивный аппарат "Калибан-3" (рис. 17), построенный любителями Англии и Канады. Центральный понтон, состоящий из продольного и поперечного набора с несущей обшивкой, обеспечивает общую прочность корпуса и плавучесть, а бортовые части образуют воздуховоды (бортовые ресиверы), которые выполнены с легкой обшивкой, закрепленной на поперечном наборе.

Конструкция кабины и ее остекления должна обеспечивать возможность быстрого выхода водителя и пассажиров из кабины, особенно в случае аварии или пожара. Расположение стекол должно обеспечивать водителю хороший обзор: линия наблюдения должна находиться в границах от 15° вниз до 45° вверх от горизонтальной линии; боковой обзор должен быть не менее 90° на каждый борт.

Передача мощности на винт и нагнетатель

Наиболее просты для любительского изготовления клиноременная и цепная передачи. Однако цепная передача используется только для привода воздушных винтов или нагнетателей, оси вращения которых расположены горизонтально, да и то лишь в том случае, если есть возможность подобрать соответствующие мотоциклетные звездочки, так как их изготовление довольно сложно.

В случае клиноременной передачи для обеспечения долговечности ремней диаметры шкивов следует выбирать максимальными, однако при этом окружная скорость ремней не должна превышать 25 м/с .

Конструкция подъемного комплекса и гибкого ограждения

Подъемный комплекс состоит из нагнетательного агрегата, воздушных каналов, ресивера и гибкого ограждения воздушной подушки (в сопловых схемах). Каналы, по которым воздух подается от нагнетателя в гибкое ограждение, должны быть спроектированы с учетом требований аэродинамики и обеспечивать минимальные потери давления.

Гибкие ограждения любительских АВП обычно имеют упрощенную форму и конструкцию. На рис. 18 показаны примеры конструктивных схем гибких ограждений и способ проверки формы гибкого ограждения после его монтажа на корпусе аппарата. Ограждения этого типа обладают хорошей эластичностью, а благодаря закругленной форме не цепляются за неровности опорной поверхности.

Расчет нагнетателей, как осевых, так и центробежных, довольно сложен и может быть выполнен только при использовании специальной литературы.

Рулевое устройство, как правило, состоит из рулевого колеса или педалей, системы рычагов (или тросиковой проводки), соединенных с вертикальным рулем направления, а иногда и с горизонтальным рулем - рулем высоты.

Орган управления может быть сделан в виде автомобильного или мотоциклетного руля. Учитывая, однако, специфику конструкции и эксплуатации АВП как летательного аппарата, чаще используют авиационную конструкцию органов управления в виде рычага или педалей. В простейшем виде (рис. 19) при наклонении рукоятки вбок движение передается посредством закрепленного на трубе рычага к элементам штуртросовой проводки и далее на руль направления. Движения рукоятки вперед и назад, возможные благодаря ее шарнирному закреплению, передаются через толкатель, проходящий внутри трубы, к проводке руля высоты.

При педальном управлении независимо от его схемы необходимо предусматривать возможность перемещения либо сиденья, либо педалей для регулировки в соответствии с индивидуальными особенностями водителя. Рычаги изготовляют чаще всего из дюралюминия, трубы передачи крепятся к корпусу с помощью кронштейнов. Движение рычагов ограничивается проемами вырезов в направляющих, укрепленных на бортах аппарата.

Пример конструкции руля направления в случае размещения его в потоке воздуха, отбрасываемого движителем, показан на рис. 20.

Рули направления могут быть либо полностью поворотными, либо состоять из двух частей - неповоротной (стабилизатора) и поворотной (пера руля) при различных процентных соотношениях хорд этих частей. Профили сечения руля любых типов должны быть симметричными. Стабилизатор руля обычно неподвижно закрепляют на корпусе; главным несущим элементом стабилизатора является лонжерон, к которому подвешивается на шарнирах перо руля. Рули высоты, очень редко встречающиеся в любительских АВП, конструируются по тем же принципам и иногда даже бывают в точности такими же, как и рули направления.

Конструктивные элементы, передающие движение от органов управления к рулям и дроссельным заслонкам двигателей, обычно состоят из рычагов, стержней, тросиков и т. п. С помощью стержней, как правило, передаются усилия в обоих направлениях, тогда как тросики работают только на тягу. Чаще всего на любительских АВП используют комбинированные системы - с тросиками и толкателями.

От редакции

Все более пристальным вниманием любителей водно-моторного спорта и туризма пользуются суда на воздушной подушке. При сравнительно небольших затратах мощности они позволяют достичь высоких скоростей; для них доступны мелеющие и труднопроходимые реки; судно на воздушной подушке может парить и над землей, и надо льдом.

Впервые с вопросами проектирования малых СВП мы знакомили читателей еще в 4 выпуске (1965 г.), поместив статью Ю. А. Будницкого «Парящие суда». В был опубликован краткий очерк развития зарубежных СВП, включающий и описание ряда спортивно-прогулочных современных 1- и 2-местных СВП. С опытом самостоятельной постройки такого аппарата рижанином О. О. Петерсонсом редакция знакомила в . Публикация об этой любительской конструкции вызвала особенно большой интерес у наших читателей. Многие из них захотели построить такую же амфибию и просили указать необходимую литературу.

В этом году издательство «Судостроение» выпускает книгу польского инженера Ежи Беня «Модели и любительские суда на воздушной подушке». В ней вы найдете изложение основ теории образования воздушной подушки и механики движения на ней. Автор приводит расчетные соотношения, которые необходимы при самостоятельном проектировании простейших СВП, знакомит с тенденциями и перспективами развития данного типа судов. В книге приведено много примеров конструкций любительских аппаратов на воздушной подушке (АВП), построенных в Великобритании, Канаде, США, Франции, Польше. Книга адресована широкому кругу любителей самостоятельной постройки судов, судомоделистам, водномоторникам. Текст ее богато иллюстрирован чертежами, рисунками и фотографиями.

В журнале публикуется сокращенный перевод главы из этой книги.

Четыре наиболее популярных зарубежных СВП

Американское СВП «Эйрскэт-240»

Двухместное спортивное СВП с поперечным симметричным расположением мест. Механическая установка - автомоб. дв. «Фольксваген» мощностью 38 кВт, приводящий во вращение осевой четырехлопастной нагнетатель и двухлопастной воздушный винт в кольце. Управление СВП по курсу осуществляется с помощью рычага, связанного с системой рулей, размещенных в потоке за воздушным винтом. Электрооборудование 12 В. Пуск двигателя - электростартерный. Размеры аппарата 4,4x1,98х1,42 м. Площадь воздушной подушки - 7,8 м 2 ; диаметр воздушного винта 1,16 м, полная масса - 463 кг, максимальная скорость на воде 64 км/ч.

Американское СВП фирмы «Скиммерс инкорпорейтед»

Своеобразное одноместное СВП-мотороллер. Конструкция корпуса основана на идее использования автомобильной камеры. Мотор двухцилиндровый мотоциклетный мощностью 4,4 кВт. Размеры аппарата 2,9х1,8х0,9 м. Площадь воздушной подушки - 4,0 м 2 ; полная масса - 181 кг. Максимальная скорость - 29 км/ч.

Английское СВП «Эйр Райдер»

Этот двухместный спортивный аппарат - одни из наиболее популярных У судостронтелей-любителей. Осевой нагнетатель приводится во вращение мотоцикл, дв. рабочим объемом 250 см 3 . Воздушный винт - двухлопастной, деревянный; работает от отдельного мотора мощностью 24 кВт. Электрооборудование напряжением 12 В с авиационным аккумулятором. Пуск двигателей - электростартерный. Аппарат имеет размеры 3,81х1,98х2,23 м; клиренс 0,03 м; подъем 0,077 м; площадь подушки 6,5 м 2 ; масса порожнем 181 кг. Развивает на воде скорость 57 км/ч, на суше - 80 км/ч; преодолевает уклоны до 15°.

В таблице 1. приведены данные одноместной модификации аппарата.

Английское СВП «Ховеркэт»

Легкое туристское судно на пять-шесть человек. Существуют две модификации: «МК-1» и «МК-2». Центробежный нагнетатель диаметром 1,1 м приводится во вращение от автомоб. дв. «Фольксваген» рабочим объемом 1584 см 3 и потребляет мощность 34 кВт при 3600 об/мин.

В модификации «МК-1» движение осуществляется при помощи воздушного винта диаметром 1,98 м, приводимого во вращение вторым таким же двигателем.

В модификации «МК-2» для горизонтальной тяги использован автомоб. дв. «Порше 912» объемом 1582 см 3 и мощностью 67 кВт. Управление аппаратом осуществляется с помощью аэродинамических рулей, помещенных в потоке за воздушным винтом. Электрооборудование напряжением 12 В. Размеры аппарата 8,28х3,93х2,23 м. Площадь воздушной подушки 32 м 2 , полная масса аппарата 2040 кг, скорость передвижения модификации «МК-1» - 47 км/ч, «МК-2» - 55 км/ч.

Примечания

1. Упрощенная методика подбора воздушного винта по известному значению сопротивления, частоте вращения и скорости поступательного движения приведена в .

2. Расчеты клиноременных и цепных передач можно выполнить, пользуясь общепринятыми в отечественном машиностроении нормами.

Окончательной конструкцией, как и неформальным названием нашей поделки, мы обязаны коллеге из газеты «Ведомости». Увидев один из испытательных «взлетов» на парковке издательства, она воскликнула: «Да это же ступа Бабы-яги!» Такое сравнение нас несказанно обрадовало: ведь мы как раз искали способ оснастить наш катер на воздушной подушке рулем и тормозом, и способ нашелся сам собой — мы дали в руки пилоту метлу!

На вид это одна из самых глупых поделок, которые мы когда-либо создавали. Но, если вдуматься, она представляет собой весьма зрелищный физический эксперимент: оказывается, слабенький воздушный поток от ручной воздуходувки, предназначенной для сметания невесомых жухлых листьев с дорожек, способен вознести над землей человека и с легкостью перемещать его в пространстве. Несмотря на весьма внушительный вид, построить такой катер проще простого: при четком соблюдении инструкций это потребует всего пару часов непыльной работы.

С помощью веревки и маркера начертите на фанерном листе круг диаметром 120 см и выпилите днище лобзиком. Сразу же изготовьте второй такой же круг.


Совместите два круга и просверлите в них насквозь 100-миллиметровое отверстие с помощью коронки. Сохраните деревянные диски, извлеченные из коронки, один из них послужит центральной «пуговицей» воздушной подушки.


Расстелите душевую шторку на столе, положите сверху днище и закрепите полиэтилен мебельным степлером. Излишек полиэтилена обрежьте, отступив пару сантиметров от скоб.


Проклейте край юбки армированным скотчем в два ряда с 50-процентным перекрытием. Это сделает юбку герметичной и позволит избежать потерь воздуха.


Разметьте центральную часть юбки: в середине будет располагаться «пуговица», а вокруг нее шесть отверстий диаметром 5 см. Вырежьте отверстия макетным ножом.


Тщательно проклейте центральную часть юбки, включая отверстия, армированным скотчем. Накладывайте ленты с 50-процентным перекрытием, наклейте два слоя скотча. Повторно прорежьте отверстия макетным ножом и прикрутите центральную «пуговицу» саморезами. Юбка готова.


Переверните днище и прикрутите к нему второй фанерный круг. 12-миллиметровая фанера удобна в обработке, но она недостаточно жесткая, чтобы выдержать требуемые нагрузки без деформации. Два слоя такой фанеры придутся в самый раз. Наденьте по краям круга теплоизоляцию для сантехнических труб и закрепите ее степлером. Она послужит декоративным бампером.


Используйте манжеты и уголки для 100-миллиметровых вентиляционных воздуховодов, чтобы подключить воздуходувку к юбке. Закрепите двигатель с помощью уголков и стяжек.


Заведите двигатель и испытайте катер, стоя на коленях. Контролируя балансировку судна, установите на платформу кресло и закрепите его саморезами.

Вертолет и шайба

Вопреки распространенному заблуждению, катер опирается вовсе не на 10-сантиметровый слой сжатого воздуха, иначе это был бы уже вертолет. Воздушная подушка представляет собой что-то вроде надувного матраса. Полиэтиленовая пленка, которой затянуто днище аппарата, заполняется воздухом, растягивается и превращается в подобие надувного круга.

Пленка очень плотно прилегает к поверхности дороги, образуя широкое пятно контакта (практически по всей площади днища) с отверстием в центре. Из этого отверстия поступает воздух под давлением. По всей площади контакта между пленкой и дорогой образуется тончайший слой воздуха, по которому аппарат легко скользит в любом направлении. Благодаря надувной юбке даже небольшого количества воздуха достаточно для хорошего скольжения, так наша ступа гораздо больше похожа на шайбу в аэрохоккее, чем на вертолет.


Ветер под юбкой

Обычно мы не печатаем в рубрике «мастер-класс» точных чертежей и настоятельно рекомендуем читателям подключать к процессу творческое воображение, как можно больше экспериментируя с конструкцией. Но это не тот случай. Несколько попыток слегка отступить от популярного рецепта стоили редакции пары дней лишней работы. Не повторяйте наших ошибок — четко следуйте инструкции.

Катер должен быть круглым, как летающая тарелка. Судну, опирающемуся на тончайшую прослойку воздуха, необходим идеальный баланс: при малейшем дефекте развесовки весь воздух будет выходить с недогруженной стороны, а более тяжелый борт всем весом ляжет на землю. Симметричная круглая форма днища поможет пилоту легко находить баланс, слегка изменяя положение тела.


Для изготовления днища возьмите 12-миллиметровую фанеру, с помощью веревки и маркера начертите круг диаметром 120 см и выпилите деталь электрическим лобзиком. Юбка делается из полиэтиленовой душевой шторки. Выбор шторки — пожалуй, самый ответственный этап, на котором решается судьба будущей поделки. Полиэтилен должен быть как можно более толстым, но строго однородным и ни в коем случае не армированным тканью или декоративными лентами. Клеенка, брезент и прочие воздухонепроницаемые ткани не подходят для постройки судна на воздушной подушке.

В погоне за прочностью юбки мы совершили нашу первую ошибку: плохо тянущаяся клеенчатая скатерть не смогла плотно прижаться к дороге и сформировать широкое пятно контакта. Площади небольшого «пятнышка» не хватило, чтобы заставить тяжелую машину скользить.

Оставлять припуск, чтобы впустить под плотную юбку больше воздуха, — не выход. При надувании такая подушка образует складки, которые будут выпускать воздух и препятствовать образованию равномерной пленки. А вот плотно прижатый к днищу полиэтилен, растягиваясь при нагнетании воздуха, образует идеально гладкий пузырь, плотно облегающий любые неровности дороги.


Скотч — всему голова

Изготовить юбку несложно. Надо расстелить полиэтилен на верстаке, накрыть сверху круглой фанерной заготовкой с предварительно просверленным отверстием для подачи воздуха и тщательно закрепить юбку мебельным степлером. С задачей справится даже самый простой механический (не электрический) степлер с 8-миллиметровыми скобами.

Армированный скотч — очень важный элемент юбки. Он укрепляет ее там, где необходимо, сохраняя эластичность остальных участков. Обратите особое внимание на усиление полиэтилена под центральной «пуговицей» и в области отверстий для подачи воздуха. Скотч накладывайте с 50%-ным перекрытием и в два слоя. Полиэтилен должен быть чистым, иначе скотч может отклеиться.

Недостаточное усиление в центральной части стало причиной забавной аварии. Юбка порвалась в районе «пуговицы», и наша подушка превратилась из «бублика» в полукруглый пузырь. Пилот с округлившимися от удивления глазами вознесся на добрые полметра над землей и спустя пару мгновений рухнул вниз — юбка окончательно лопнула и выпустила весь воздух. Именно этот инцидент привел нас к ошибочной мысли использовать вместо душевой шторки клеенку.


Еще одно заблуждение, постигшее нас в процессе строительства катера, заключалось в уверенности, что мощности много не бывает. Мы раздобыли большую ранцевую воздуходувку Hitachi RB65EF с объемом двигателя 65 см 3 . У этой зверь-машины есть одно веское преимущество: она комплектуется гофрированным шлангом, с помощью которого очень легко подключить вентилятор к юбке. А вот мощность 2,9 кВт — явный перебор. Полиэтиленовой юбке нужно давать ровно такой объем воздуха, которого будет достаточно для подъема машины на 5−10 см над землей. Если переборщить с газом, полиэтилен не выдержит давления и порвется. Именно так и случилось с нашей первой машиной. Так что будьте уверены: если в вашем распоряжении есть хоть какая-нибудь воздуходувка, она подойдет для проекта.

Полный вперед!

Обычно у судов на воздушной подушке есть как минимум два винта: один маршевый, сообщающий машине поступательное движение вперед, и один вентилятор, нагнетающий воздух под юбку. Как же наша «летающая тарелка» будет двигаться вперед, и сможем ли мы обойтись одной воздуходувкой?

Этот вопрос мучил нас ровно до первых успешных испытаний. Оказалось, юбка так хорошо скользит по поверхности, что даже малейшего изменения баланса достаточно, чтобы аппарат сам собой поехал в ту или иную сторону. По этой причине устанавливать на машину кресло нужно только на ходу, чтобы правильно сбалансировать машину, и лишь затем привинтить ножки к днищу.


Мы попробовали вторую воздуходувку в качестве маршевого двигателя, но результат не впечатлил: узкое сопло дает быстрый поток, но объема проходящего через него воздуха недостаточно, чтобы создать мало-мальски заметную реактивную тягу. Что вам действительно понадобится при движении, так это тормоз. Вот на эту роль идеально подходит метла Бабы-яги.

Назвался судном — полезай в воду

К сожалению, наша редакция, а вместе с ней и мастерская располагаются в каменных джунглях, вдали даже от самых скромных водоемов. Поэтому мы не смогли спустить наш аппарат на воду. А ведь теоретически все должно работать! Если постройка катера станет для вас дачным развлечением в жаркий летний день, испытайте его на мореходность и поделитесь с нами рассказом о своих успехах. Разумеется, выводить катер на воду нужно с пологого берега на крейсерском дросселе, с полностью надутой юбкой. Допустить потопление никак нельзя — погружение в воду означает неминуемую гибель воздуходувки от гидроудара.

На просторах нашей страны любители активного отдыха не упускают возможностей обеспечить себе комфортное передвижение по бездорожью, включая водные преграды, в любое время года. И если снегоходом, гидроциклом и аэроботом уже никого не удивишь, то использование военной техники привлекает к себе внимание. В фокусе данной статьи - катер на воздушной подушке, его технические характеристики, возможности использования в мирное время, отзывы пользователей и краткий обзор цен на данный вид транспорта.

Принцип действия

Катер на воздушной подушке, благодаря законам аэродинамики, использует поток воздуха, создаваемый двигателем не только для движения, но и для снижения силы трения. Воздушная подушка представляет собой слой сжатого воздуха под днищем транспорта, который удерживается за счёт силы тяжести судна. Превышение давления воздуха приводит к его стравливанию в зоне соприкосновения днища судна с поверхностью земли или воды. В момент стравливания лишнего воздуха сила трения между днищем транспорта и поверхностью земли практически отсутствует - это даёт возможность не только перемещать судно с помощью аэродвигателя, но и свободно им управлять.

Помимо статической работы, направленной на преодоление трения, движительно-нагнетательная система создаёт и динамическую работу, заставляя судно двигаться. Для этого на корпусе катера установлен огромный вентилятор, который мощным потоком воздуха придаёт ускорение катеру. Расположенные за вентилятором перекрытия позволяют управлять потоком воздуха, регулируя направление движения транспорта.

Технические возможности

Технические характеристики катеров на воздушной подушке не позволят любителям активного отдыха равнодушно пройти мимо.

  1. Любая поверхность для передвижения. Водоём с высотой волны до 25 см, ледяной или снежный покров - это родная стихия для судна. Допускается передвижение по траве, песку, болоту, гравию или асфальту, однако в таких случаях нужно быть готовыми к быстрому износу гибкого ограждения воздушной подушки.
  2. Грузоподъёмность. Если речь касается гражданских судов, то грузоподъёмность, включая пассажиров, составляет примерно 1000-1500 килограмм. В большей степени данный параметр зависит от мощности двигателя.
  3. Скорость движения и расход топлива. Стандартом принято считать расход в 20 литров топлива в час на крейсерской скорости в 60 км/ч. Максимальные показатели не должны отклоняться от арифметической прогрессии. То есть скорость катера 120 км/ч увеличит расход топлива в два раза, но не более.

Ограничения использования

Малые, средние или большие катера на воздушной подушке имеют ряд ограничений, которые необходимо знать всем без исключений покупателям.

  1. При высоте волны более 30 см на водной поверхности движение катера будет затруднено и может привести к затоплению, так как рывки и удары о гребни волны снижают давление воздуха под гибким ограждением, погружая судно наполовину в воду.
  2. Густая и высокая растительность ограничивает плотное прилегание гибкого ограждения к поверхности земли, что также может затруднить перемещение.
  3. Жёсткие преграды свыше 35 см (коряги, пеньки, камни) не только понижают давление под днищем судна, но и могут повредить гибкое ограждение. Пусть ремонт катеров на месте не является проблемой при наличии шила и проволоки, однако это лишние временные затраты.

Откуда возник интерес

Речные и морские катера на воздушной подушке в XX веке считались лучшим транспортом для совершения прогулок по водной глади. Огромная скорость, прекрасная манёвренность и высокая безопасность привлекали не только туристов, но и местное население, которое перемещалось на загородные участки и обратно по морям, озёрам и рекам нашей огромной страны. А вот внимание охотников и рыбаков привлёк десантный катер после демонстрации фильма «Ответный ход» на закате двадцатого столетия. Именно тогда зародилась эра малых суден на воздушной подушке, ведь в фильме наглядно были представлены все технические возможности данного вида транспорта, для которого практически не существует преград.

Десантные катера до сих пор стоят на вооружении многих стран мира. Мир и покой россиян оберегает самое большое в мире судно на воздушной подушке под названием «Зубр». Ему не составит особых проблем пересечь всю акваторию Чёрного моря, имея на борту пару танков и десяток БТРов. Помимо перевоза грузов судно имеет на борту крылатые ракеты, что делает его боевой единицей в военное время.

Юный техник - начало всех начал

Воспроизвести десантный катер в приемлемых для транспортировки размерах русским кулибиным не составило особых проблем. Проведя испытания и предоставив технологию производства амфибии в научно-технические издания страны, народные умельцы дали возможность военным технологиям послужить в мирных целях. Если открыть любой технический журнал того времени, на фото можно обнаружить не только моторные катера на воздушной подушке либо с жёстким дном. Для преодоления сухопутных и водных просторов мастера придумывали всевозможные симбиозы автомобильных транспортов и плавучих средств, отдалённо напоминающих БРДМ.

Однако все они так и остались лишь на бумаге, чего не скажешь о самом популярном в мире транспорте, для которого не существует преград, - средстве на воздушной подушке (СВП). В средствах массовой информации даже сейчас можно найти множество подробных инструкций, подтверждённых фото и видеозаписями, по производству плавсредств собственными руками с нуля. Однако профессионалы рекомендуют воздержаться от таких предложений, ведь СВП считается травмоопасным.

Выше только звезды

Самым лучшим плавающим средством на воздушной подушке признан катер серии «Пегас». В первую очередь, он отличается от конкурентов возможностью использования в любое время года. Все новые катера имеют салон закрытого типа. Выполнен он с системой отопления и позволяет сохранять комфортные условия даже в тридцатиградусный мороз. В летнюю жару кабина легко трансформируется, позволяя улучшить циркуляцию свежего воздуха. В зависимости от модификации плавсредство способно принимать на борту от 5 до 8 человек со снаряжением 350-500 кг.

Если учесть малый расход топлива и хорошие показатели дальности хода и скорости, то можно сделать вывод, что это самый лучший катер. Цена такого устройства способна смутить обычного человека - 30 000 условных единиц. Однако если суммировать стоимость вместе взятой техники - моторной лодки, квадроцикла и снегохода, станет ясно, что средство на воздушной подушке имеет очень привлекательную цену.

Если интересен корпоративный сегмент, то лидером здесь признано судно серии «Нептун». Имея в распоряжении множество модификаций, устройство в первую очередь позиционируется как транспорт высокой проходимости для перевозки пассажиров.

Отечественная альтернатива

Помимо «Пегаса» на российском рынке хорошо зарекомендовали себя судна на воздушной подушке «Марс», «Неотерик», «Стрелец», «Мираж», а также морские катера для перевозки до 15 человек серии «Аэроджет». Все они относятся к туристическому классу, из-за чего имеют ряд ограничений, в первую очередь касающихся режимов эксплуатации. Например, судно «Мираж» можно использовать круглый год, включая сильные морозы, однако перемещение его по волнам и неровным поверхностям ограничено из-за некоторых особенностей конструкции. А вот малыш «Неотерик» способен пройти там, где не ступала нога человека, не говоря уже про низкий расход топлива (5 литров в час) и огромную скорость катера. А вот с грузоподъёмностью и эксплуатацией при отрицательных температурах у него большие проблемы.

Чудом российской промышленности считают средство на воздушной подушке, носящее название «Жук». После просмотра СВП на фото ни у кого не повернётся язык назвать его плавсредством. Он больше напоминает мотоцикл на воздушной подушке. Двухместное устройство малых размеров показывает высокие характеристики проходимости на разных поверхностях и под большими углами.

СВП для развлечения

Судя по многочисленным отзывам владельцев, большую популярность в России завоевал катер на воздушной подушке «Торнадо». Изготовлен он украинским производителем ООО «Артель» на Николаевской верфи. Изначально катер позиционируется как плавсредство для развлечений и культурного отдыха. Достаточно увидеть фото катера, чтобы убедиться в его непригодности к рыбалке или охоте. Малые габариты, низкая грузоподъёмность дают возможность СВП нарушать все законы физики и аэродинамики как в скорости и манёвренности, так и в прохождении всевозможных преград. Чем же он заинтересовал российского покупателя?

  1. Низкая цена. Всего за десять тысяч условных единиц можно приобрести себе универсальное средство передвижения.
  2. Возможность модернизации. Катер СВП прекрасно переоборудуется как для охоты, так и для рыбалки для двух человек.
  3. Запчасти российского производства. Помимо двигателя РМЗ-550 все компоненты можно найти на отечественном рынке.

Недорогой, но и маломощный катер на воздушной подушке Hov Pod SPX, представленный заводом Англии, является самым популярным плавсредством в Европе. Также он стоит на вооружении двух десятков стран мира и пользуется спросом в миссиях спасения ООН. На розничном рынке катер позиционируется как транспорт для всей семьи - рыбалка, туризм, активный отдых, пикник - все это ему подвластно. Производитель утверждает, что простота, удобство и безопасность - главные атрибуты этого судна, а управление катером можно доверить ребёнку.

Английские высокотехнологичные устройства и механизмы всегда отличались от конкурентов своей безукоризненностью. Катер Hov Pod SPX на воздушной подушке выполнен из уникального композитного материала, который применяется для изготовления ограждений в «Формуле-1». Рулевое управление сделано из нержавеющей стали Teleflex. Основание корпуса, защита двигателя, а также все металлические компоненты в конструкции кузова хромированы. Таким образом, производитель даёт понять своим покупателям, что морские прогулки на судне не запрещены.

Потребность государственных структур

Помимо активного отдыха и развлечений средства на воздушной подушке нашли своё предназначение в Министерстве внутренних дел и чрезвычайных ситуаций. Например, плавсредство «Север» применяется транспортной полицией для поиска и задержания подозреваемых в совершении преступления. Аппарат на воздушной подушке не только показывает прекрасные скоростные характеристики (150 км/час на воде), но и способен преодолевать затяжные уклоны до 30 градусов. Данное судно было замечено на вооружении у рыбинспекции. Прекрасные тактико-технические характеристики всегда сумеют привлечь к себе внимание.

Для ремонта мостов и сооружений, обслуживания нефтедобывающих платформ, проведения всевозможных водолазных работ, а также если необходим ремонт катеров, яхт и грузовых судов, стоящих на рейде, используют плавсредство на воздушной подушке серии «Шельф». Огромная мощность двигателя и большие размеры позволяют размещать на судне до двух тонн груза без учёта 20 рабочих. Разворот на 360 градусов без смещений позволяет легко маневрировать в любом труднодоступном месте.

Японские моторы

Преимущественно все катера на воздушной подушке снабжаются двигателями японских гигантов автомобилестроения Honda и Subaru. Такой выбор неслучаен. В отличие от обычных моторных лодок, где приоритетным является количество оборотов в минуту карданного вала, плавсредствам с движительно-нагнетательной системой больше важна высокая мощность. Естественно, экономичность расхода топлива всегда в приоритете у любого владельца. Двухлитровые и 130-сильные моторы Honda D15B и Subaru EJ20 нашли себе применение на катерах с воздушной подушкой.

И если изначально их выбор обосновывался высокой производительностью и долговечностью в процессе эксплуатации, то на данный момент популярность заключается в возможностях модернизации. Народные умельцы не только подняли двигателям мощность до 150 лошадиных сил, но и значительно их облегчили, произведя замену некоторых компонентов. В результате получается очень резвый катер на воздушной подушке.

Законность использования

Катер на воздушной подушке относится к маломерным судам, а значит, подлежит регистрации в государственной инспекции с соответствующим названием. Для управления плавсредством его также необходимо поставить на учёт и получить специальные права. Эти процедуры очень просты, они не вызывают каких-либо проблем. Хлопоты может доставить лишь получение медицинской справки для сдачи на права. Ведь не каждый день врачи принимают владельцев маломерных судов. Судя по многочисленным отзывам владельцев СВП, при прохождении комиссии рекомендуется говорить про обычную проверку на управление автотранспортом. Таким образом, владелец значительно ускорит прохождение комиссии и избавит себя от вопросов и шуток со стороны медицинского персонала.

В заключение

Как оказалось, рынок плавсредств на воздушной подушке не пустует. Большое количество моделей как отечественного, так и импортного производства имеют доступную цену и открывают широкий спектр возможностей. Делая выбор среди моделей, нужно поначалу очертить сферы использования - прогулки, развлечения, путешествия, охота, рыбалка. После этого рекомендуется определиться, в какой сезон будет использоваться катер. Цена плавсредства сильно зависит от этого выбора.

Определиться нужно с количеством пассажиров и грузоподъёмностью. А вот выбор двигателя, топливной системы и рулевого управления особой роли не играет, так как большинство устройств имеют очень схожие характеристики, которые незначительно отразятся на цене. Если только потенциальный покупатель не решит отдать своё предпочтение английскому болиду, который имеет 65-сильный двигатель и не способен разогнаться свыше 70 км/ч.

Катера на воздушной подушке

Этот катер является скоростным судном, способным передвигаться над гладью воды и над любой ровной твердой поверхностью: болото, песок, снег. Идея судна на воздушной подушке появилась еще в XVIII веке. Но только в 1926 году русский ученый и изобретатель Циолковский разработал принцип передвижения на воздушной подушке. А через почти 10 лет инженером В. Левковым был сконструирован первый такой аппарат. К сожалению, проект был полностью уничтожен в годы Второй Мировой Войны. «Парящий аппарат», на основе, которого построены все современные суда, был создан британским изобретателем Кокереллом. Первый корабль модели SR-N1, построенный в 1959 году, пересек Английский канал всего за 20 минут. Сейчас катера используются в военных целях, в экспедициях по труднодоступным местам, в сложных климатических условиях, а также как развлекательный аттракцион для туристов.

Принцип действия воздушной подушки

Подушка образуется в результате аккумуляции сжатого воздуха под дном корабля. Он поднимает катер над водой и сушей. Благодаря подаваемому воздуху снижается сила трения. Это позволяет аппарату беспрепятственно двигаться над поверхностями.

Существует несколько видов воздушной подушки:

  1. Вид, при котором воздушные потоки, собирающийся за счет воздушного винта, свободно обволакивает дно вокруг корабля. Сильные потоки воздуха заставляют выше парить катер.
  2. Скеговые катера оснащены узкими корпусами – скегами. Они экономят воздух. Такое судно может плыть исключительно над водой.
  3. Катера с сопловым видом передвигаются за счет аккумуляции воздуха из специальных сопел. Подушка ограждается струями воды, образующимися в соплах.

Также подушки разделяются по способу образования:

  1. Статическое устройство образуется с помощью внешнего вентилятора;
  2. Динамическая воздушная подушка – продукт повышенного давления в днище, которое образуется при движении катера над поверхностью.

Технические возможности

Технические характеристики катера достаточно обширные. Такие лодки подойдут и для активного отдыха, и для исследовательских экспедиций, и для участия в военных действиях.

  1. Высокая скорость при небольшом расходе топлива. При крейсерской скорости около 60 км/час расход топлива 20 литров.
  2. Катер может передвигаться практически по любой поверхности: вода, песок, болото, снег и даже по траве и асфальту.
  3. Средняя грузоподъёмность пассажирского катера составляет 1-1,5 тонны.
  4. Катера могут функционировать в любое время года и в любых погодных условиях, даже во время ледохода.

Десантный катер “Кальмар”

При таких характеристиках все же катер имеет ограничения использования. Во-первых, это судно не может преодолевать твердые преграды свыше 35 сантиметров. Например, столкновение с корягой или бревном будет стоить судоходному аппарату понижением давления в днище или повреждением гибкого ограждения судна. Во-вторых, катер не выдерживает высоких волн. Это затрудняет движение и даже может его потопить. В-третьих, проходимость по густым и высоким зарослям также может вызвать трудности передвижения.

Катера-амфибии

Судна-амфибии – это компактные судна, передвигающиеся обычно за счет воздушных винтов. Они расположены сверху корпуса. Благодаря винтовым кольцевым насадкам снижается шум от их работы, и происходит увеличение тяговой силы. Чтобы судно передвигалось быстрее, корпус амфибии облегчен. Он создан из алюминия, а рубка управления стеклопластиковая. Силовая установка обычно дизельная или бензиновая и охлаждается воздухом. Легкий корпус с мощной силовой установкой делают катер быстроходным. Яркими представителями катеров-амфибий можно считать:

  • Нептун 3 с двигателем Rotax-582UL;
  • Пегас 4М – модель Rotax912;
  • Хивус-4 с силовой установкой ВАЗ-21213;
  • Кайман оснащен двигателем Subaru. Его мощность – 260 лошадиных сил;
  • Гепард, на котором установлен двигатель 3М3-53-11.

Катер “Гепард”

Развитие российских катеров

Развитие российских катеров можно условно разделить на несколько этапов. Первый этап начинается с 1937 по 1940 годы с проектирования катеров серии «Л» инженером Левковым. К сожалению, вес построенные и испытанные корабли не выдержали суровых боевых условий войны 1940-1945 года, и были уничтожены.

Важным этапом развития судов является конструкторская идея английского профессора Коккерела, который предложил в 1955 г. нагнетать воздух с помощью сопел. В дальнейшем основные сконструированные суда основывались на его изобретении.

Ведущее судостроительное бюро «Алмаз» стало главным местом развития советских катеров с воздушной подушкой. Первым серийным катером организации, который был создан в 1969 году, стал десантный штурмовик «Скат». Далее он стал основой для модификаций «Мурена» и «Омар». В следующие годы был создан десантный катер «Кальмар».

Десантный катер на воздушной подушке “Зубр”

В 1988 году был создан быстроходный самый большой катер в мире «Зубр» с грузоподъёмностью в 150 тонн.

Все технологии, применяемые в строительстве военных судов, были учтены и в гражданских катерах. Но в дальнейшем, проанализировав весь предыдущий опыт создания плавательных средств, конструкторы пришли к выводу, что проект убыточен. И было решено использовать более экономичные дизельные двигатели.

Представители гражданских судов

Катер «Барс» предназначен для поисково-спасательных работ и транспортировки пассажиров в труднодоступные места. Его длина составляет 6,8 метра, а ширина – 3,5 метра. Катер вмещает от 6 до 8 человек с водителем. Он развивает скорость до 80 км/час. Имеет один бензиновый двигатель модели М-14В26 мощностью 325 лошадиных сил.

Катер на воздушной подушке «Гепард» – это четырехместное алюминиевое судно. Используется спасателями, речной полицией, почтовыми службами. Силовая установка включает в себя автомобильный двигатель ЗМЗ-53-11 и два винта с кольцевой насадкой, что делает катер низкошумным. Развивает скорость до 60 км/час.

Представители военных судов

Десантные катера имеют военное назначение и призваны высаживать десант, военный груз, оружие в труднодоступных местах. Это могут быть болотистые или заснеженные местности, скрытые пляжи и бухты. Тактические суда могут наносить вооруженные удары и оказывать огневую поддержку другим судам.

Десантный катер проекта 1205 «Скат» – первый серийный проект конструкторского бюро «Алмаз». Судно рассчитано на перевозку 40 солдат. Длина корабля – 21,4 метра, ширина – 7,3 метра, а осадка – 50 сантиметров. На «Скате» установлено две газовые турбины ТВД-10М и одна ТДВ-10. Катер развивает скорость до 49 узлов. Дальность плавания составляет 200 миль. Экипаж корабля – 4 человека. Десантный катер вооружен четырьмя 30-мм гранатомета БП-30 «Пламя» и двумя 7,62-мм пулеметами Калашникова. Также на борту установлено радиолокационное оборудование «Кивач-1».

Катер на воздушной подушке “Зубр”

Десантный катер на воздушной подушке «Зубр» – пока самый крупный катер в своем роде. Он предназначен для выброса десанта, грузов, а также для перевозки и постановки мин и огневой поддержки других судов. Он способен передвигаться по земле и болоту, обходить рвы и минные заграждения. Длин судна составляет 57 метров, а ширина – 25,6 метра. Благодаря пяти газотурбинным двигателям общей мощностью 50 тысяч лошадиных сил, он достигает максимальной скорости до 60 узлов.

Вооружение составляет:

  1. Две пусковые установки А-22 «Огонь» с неуправляемыми ракетами
  2. Две 30-мм установки АК-630 и система управления огнем МР-123
  3. Восемь комплектов зенитно-ракетного комплекса «Игла».

Корпус катера обычно состоит из внешней и внутренней оболочек. Наружная оболочка – это наклоненные на 50 градусов борта без дна. Они плоские по ширине и немного выпуклые вверху. Нос катера скругленный. Есть открытые катера и катера с закрытой кабиной. Внутри кабины установлено рулевое оборудование и средства связи.

Десантные суда имеют более мощные газотурбинные двигатели различных моделей. Например, на «Кальмаре» установлена модель АЛ-20К, а на американском LCAC – Allied-Signal TF-40B. Малые катера пассажирского вида оснащены автомобильными дизельными или бензиновыми двигателями различных моделей. Это и ВАЗ-21213, и Subaru, и Rotax и ЗМЗ-53.

В катерах на воздушной подушке установлены на корпусе воздушные винты. Они в зависимости от размера судна бывают: 4, 6 и 9-лопастные с фиксированным шагом. Количество винтов варьируется от 1 до 4.

Мягкое ограждение или «юбка» достаточно эластичная. Это отдельные части, сшитые из плотной, но легкой ткани. Полотно имеет водоотталкивающие и водонепроницаемые свойства, не замерзает. Обычно используется прорезиненный капрон.

Противошумная защита судна обеспечивается:

  1. Амортизацией двигателей
  2. Наличием эластичных муфт
  3. Глушителями выхлопных газов
  4. Конструкция рубки имеет три слоя
  5. Использованием звукоизоляционного материала между салоном и отсеком топливного бака.

Материал корпуса бывает: алюминиевым и композитным. Военные катера на воздушных подушках изготовлены из прочных сплавов алюминия. Пассажирские катера на воздушной подушке изготавливаются из высокотехнологичных и прочных композитных материалов. Все крепежи и металлические элементы созданы их нержавеющей стали.

Обычно малые катера достаточно просто ремонтируются специалистами или экипажем. Мелкий ремонт есть возможность сделать самостоятельно. Для этого необходимо иметь на борту специальный ремонтный набор. Суда крупнее ремонтируются специально обученной бригадой судоремонтников.

Качество дорожной сети в нашей стране оставляет желать лучшего. Строительство транспортной инфраструктуры на некоторых направлениях нецелесообразно по экономическим причинам. С перемещением людей и грузов в таких местностях отлично справятся транспортные средства, работающие на иных физических принципах. Полноразмерные суда на воздушной подушке своими руками в кустарных условиях не построить, а вот масштабные модели — вполне возможно.

Транспортные средства этого вида способны перемещаться по любому относительно ровному покрытию. Это могут быть и чистое поле, и водоем, и даже болото. Стоит заметить, что на таких непригодных для другого транспорта покрытиях СВП способно развивать достаточно высокую скорость. Основным недостатком такого транспорта является необходимость больших энергозатрат на создание воздушной подушки и, как следствие, большой расход топлива.

Физические принципы работы СВП

Высокая проходимость транспортных средств такого типа обеспечивается низким удельным давлением, которое оно оказывает на поверхность. Это объясняется довольно просто: площадь контакта транспортного средства равна или даже превышает площадь самого транспортного средства. В энциклопедических словарях СВП определяются как суда с динамически создаваемой опорной тягой.
Крупные и маломерные суда на воздушной подушке зависают над поверхностью на высоте от 100 до 150 мм. В специальном устройстве под корпусом создается избыточно давление воздуха. Машина отрывается от опоры и теряет с ней механический контакт, в результате чего сопротивление движению становится минимальным. Основные затраты энергии идут на поддержание воздушной подушки и разгон аппарата в горизонтальной плоскости.

Составление проекта: выбор рабочей схемы

Для изготовления действующего макета СВП необходимо выбрать эффективную для заданных условий конструкцию корпуса. Чертежи судов на воздушной подушке можно найти на специализированных ресурсах, где размещены патенты с подробным описанием разных схем и способов их реализации. Практика показывает, что одним из самых удачных вариантов для таких сред, как вода и твердый грунт, является камерный способ формирования воздушной подушки.

В нашей модели будет реализована классическая двухмоторная схема с одним нагнетающим силовым приводом и одним толкающим. Малоразмерные суда на воздушной подушке своими руками изготовленные, по сути, являются игрушками-копиями больших аппаратов. Однако они наглядно демонстрируют преимущества использования таких средств передвижения перед остальными.

Изготовление корпуса судна

При выборе материала для корпуса судна основными критериями являются простота в обработке и невысокий удельный вес. Самодельные суда на воздушной подушке относятся к категории амфибийных, а значит, в случае его несанкционированной остановки не произойдет затопления. Корпус судна выпиливается из фанеры (толщиной 4 мм) по заранее подготовленному лекалу. Для выполнения этой операции используется лобзик.

Самодельное судно на воздушной подушке имеет надстройки, которые для снижения веса лучше сделать из пенополистирола. Для придания им большего внешнего сходства с оригиналом снаружи производится оклеивание деталей пеноплексом и окрашивание. Стекла кабины делаются их прозрачного пластика, а остальные детали вырезаются из полимеров и выгибаются из проволоки. Максимальная детализация – ключ к сходству с прототипом.

Выделка воздушной камеры

При изготовлении юбки используется плотная ткань из полимерного водонепроницаемого волокна. Раскрой осуществляется по чертежу. Если у вас нет опыта переноса эскизов на бумагу вручную, то их можно распечатать на широкоформатном принтере на плотной бумаге, а потом вырезать обычными ножницами. Подготовленные детали сшиваются между собой, швы должны быть двойными и плотными.

Суда на воздушной подушке, своими руками выполненные, до включения нагнетающего двигателя опираются корпусом на грунт. Юбка частично сминается и располагается под ним. Склеивание деталей производится водостойким клеем, стык закрывается корпусом надстройки. Такое соединение обеспечивает высокую надежность и позволяет сделать монтажные стыки незаметными. Из полимерных материалов выполняется и другие внешние детали: ограждение диффузора винта и тому подобное.

Силовая установка

В составе силовой установки присутствует два двигателя: нагнетающий и маршевый. В модели используются бесколлекторные электромоторы и двухлопастные винты. Дистанционное управление ими осуществляется при помощи специального регулятора. Источником питания для силовой установки являются два аккумулятора суммарной емкостью в 3000 mAh. Их заряда достаточно для получасового использования модели.

Самодельные суда на воздушной подушке управляются дистанционно по радиоканалу. Все компоненты системы — радиопередатчик, приемник, сервоприводы — заводского изготовления. Установка, подключение и тестирование их производится в соответствии с инструкцией. После включения питания выполняется пробный прогон двигателей с постепенным увеличением мощности до образования устойчивой воздушной подушки.

Управление моделью СВП

Суда на воздушной подушке, своими руками изготовленные, как уже отмечалось выше, имеют дистанционное управление по УКВ-каналу. На практике это выглядит следующим образом: в руках владельца находится радиопередатчик. Запуск двигателей выполняется нажатием на соответствующую кнопку. Управление скоростью и изменение направления движения производятся джойстиком. Машинка проста в маневрировании и достаточно точно выдерживает курс.

Испытания показали, что СВП уверенно перемещается по относительно ровной поверхности: по воде и по суше с одинаковой легкостью. Игрушка станет любимым развлечением для ребенка в возрасте от 7-8 лет с достаточно развитой мелкой моторикой пальцев рук.

Что такое “ховеркрафт”?

Технические данные аппарата

Какие нужны материалы?

Как изготовить корпус?

Какой нужен двигатель?

Судно на воздушной подушке своими руками

Ховеркрафт – это транспортное средство, способное перемещаться как по воде, так и по суше. Подобное средство передвижения совсем не сложно сделать своими руками.

Что такое “ховеркрафт”?

Это аппарат, где совмещены функции автомобиля и лодки. В результате этого получилось судно на воздушной подушке (СВП), обладающее уникальными характеристиками проходимости, без потерь скорости при движении по воде благодаря тому, что корпус судна перемещается не по воде, а над ее поверхностью. Это дало возможность двигаться по воде гораздо быстрее, за счет того, что сила трения водных масс не оказывает никакого сопротивления.

Хотя судно на воздушной подушке и обладает рядом достоинств, его область применения не получила столь широкого распространения. Дело в том, что не по любой поверхности этот аппарат может передвигаться без особых проблем. Для него нужна мягкая песчаная или грунтовая почва, без наличия камней и других преград. Наличие асфальта и других твердых оснований может привести в негодность днище судна, которое создает воздушную подушку при движении. В связи с этим, “ховеркрафты” используются там, где нужно больше плыть и меньше ехать. Если наоборот, то лучше воспользоваться услугами автомобиля-амфибии с колесами. Идеальные условия их применения – это труднопроходимые болотистые места, где кроме судна на воздушной подушке (СВП) никакой другой транспорт проехать не сможет. Поэтому СВП и не получили столь широкого распространения, хотя подобным транспортом пользуются спасатели некоторых стран, таких как Канада, например. По некоторым данным, СВП находятся на вооружении стран НАТО.

Как приобрести подобный транспорт или как его сделать своими руками?

Ховеркрафт – это дорогой вид транспорта, средняя цена которого доходит до 700 тыс. рублей. Транспорт типа “скутер” стоит раз в 10 дешевле. Но при этом следует учитывать тот факт, что транспорт заводского изготовления всегда отличается лучшим качеством, по сравнению с самоделками. Да и надежность транспортного средства выше. К тому же, заводские модели сопровождаются заводскими гарантиями, чего не скажешь о конструкциях, собранных в гаражах.

Заводские модели всегда были ориентированы на узкопрофессиональное направление, связанное либо с рыбалкой, либо с охотой, либо со специальными службами. Что касается самодельных СВП, то они встречаются крайне редко и тому есть свои причины.

К таким причинам следует отнести:

  • Довольно высокую стоимость, а также дорогое обслуживание. Основные элементы аппарата быстро изнашиваются, что требует их замены. Причем каждый такой ремонт выльется в копеечку. Подобный аппарат позволит себе купить только богатый человек, да и то он подумает лишний раз, стоит ли с ним связываться. Дело в том, что такие мастерские – это такое же редкое явление, как и само транспортное средство. Поэтому, выгоднее приобрести гидроцикл или квадроцикл для перемещения по воде.
  • Работающее изделие создает много шума, поэтому передвигаться можно только в наушниках.
  • При движении против ветра существенно падает скорость и значительно увеличивается расход горючего. Поэтому, самодельные СВП – это скорее демонстрация своих профессиональных способностей. Судном не только нужно уметь управлять, но и уметь его ремонтировать, без существенных затрат средств.

Процесс изготовления СВП своими руками

Во-первых, собрать в домашних условиях хорошее СВП не так-то и просто. Для этого необходимо иметь возможности, желание и профессиональные навыки. Не помешает и техническое образование. Если отсутствует последнее условие, то лучше от постройки аппарата отказаться, иначе можно разбиться на нем при первом же испытании.

Все работы начинаются с эскизов, которые потом трансформируются в рабочие чертежи. При создании эскизов следует помнить, что этот аппарат должен быть максимально обтекаемым, чтобы не создавать лишнего сопротивления при движении. На этом этапе следует учитывать тот фактор, что это, практически, воздушное средство передвижения, хотя оно и находится очень низко к поверхности земли. Если все условия взяты во внимание, то можно приступать к разработке чертежей.

На рисунке представлен эскиз СВП Канадской службы спасения.

Технические данные аппарата

Как правило, все судна на воздушной подушке способны развивать приличную скорость, которую не сможет развить никакая лодка. Это если учесть, что лодка и СВП имеют одинаковую массу и мощность двигателя.

При этом, предложенная модель одноместного судна на воздушной подушке рассчитана на пилота весом от 100 до 120 килограммов.

Что касается управления транспортным средством, то оно довольно специфичное и в сравнении с управлением обычной моторной лодкой никак не вписывается. Специфика связана не только с наличием большой скорости, но и способом передвижения.

Основной нюанс связан с тем, что на поворотах, особенно на больших скоростях, судно сильно заносит. Чтобы подобный фактор свести к минимуму, необходимо на поворотах наклоняться в сторону. Но это кратковременные трудности. Со временем техника управления осваивается и на СВП можно показывать чудеса маневренности.

Какие нужны материалы?

В основном понадобится фанера, пенопласт и специальный конструкторский набор от ”Юниверсал Ховеркрафт”, куда входит все необходимое для самостоятельной сборки транспортного средства. В комплект входит изоляция, винты, ткань для воздушной подушки, специальный клей и другое. Этоn набор можно заказать на официальном сайте, заплатив за него 500 баксов. В комплект также входит несколько вариантов чертежей, для сборки аппарата СВП.

Как изготовить корпус?

Поскольку чертежи уже имеются, то форму судна следует привязать к готовому чертежу. Но если имеется техническое образование, то, скорее всего, будет построено судно не похожее ни на какой из вариантов.

Днище судна изготавливается из пенопласта, толщиной 5-7 см. Если нужен аппарат для перевозки больше, чем одного пассажира, то снизу крепится еще один такой лист пенопласта. После этого, в днище делаются два отверстия: одно предназначается для потока воздуха, а второе для обеспечения подушки воздухом. Вырезаются отверстия с помощью электрического лобзика.

На следующем этапе осуществляют герметизацию нижней части транспортного средства от влаги. Для этого, берется стекловолокно и клеится на пенопласт с помощью эпоксидного клея. При этом, на поверхности могут образоваться неровности и воздушные пузыри. Чтобы от них избавиться, поверхность покрывается полиэтиленом, а сверху еще и одеялом. Затем, на одеяло ложится еще один слой пленки, после чего она фиксируется к основанию скотчем. Из этого “бутерброда” лучше выдуть воздух, воспользовавшись пылесосом. По истечении 2-х или 3-х часов эпоксидная смола застынет и днище будет готовым к дальнейшим работам.

Верх корпуса может иметь произвольную форму, но учитывать законы аэродинамики. После этого приступают к креплению подушки. Самое главное, чтобы в нее поступал воздух без потерь.

Трубу для мотора следует использовать из стирофома. Здесь главное, угадать с размерами: если труба будет слишком большой, то не получится той тяги, которая необходима для подъема СВП. Затем следует уделить внимание креплению мотора. Держатель для мотора – это своеобразный табурет, состоящий из 3-х ножек, прикрепленных к днищу. Сверху этой “табуретки” и устанавливается двигатель.

Какой нужен двигатель?

Имеется два варианта: первый вариант – это применение двигателя от компании “Юниверсал Ховеркрафт” или использование любого подходящего движка. Это может быть двигатель от бензопилы, мощности которого вполне хватит для самодельного устройства. Если хочется получить более мощное устройство, то следует брать и более мощный двигатель.

Желательно использовать лопасти заводского изготовления (те, что в наборе), так как они требуют тщательной балансировки и в домашних условиях это сделать достаточно сложно. Если этого не сделать, то разбалансированные лопасти разобьют весь двигатель.

Насколько надежным может быть СВП?

Как показывает практика, заводские судна на воздушной подушке (СВП) приходится ремонтировать где-то один раз в полгода. Но это неполадки несущественные и не требуют серьезных затрат. В основном, отказывает подушка и система подачи воздуха. Вообще-то, вероятность того, что самодельное устройство развалится в процессе эксплуатации, очень мала, если “ховеркрафт” собран грамотно и правильно. Чтобы это случилось, нужно на большой скорости налететь на какое-нибудь препятствие. Несмотря на это, воздушная подушка все же способна защитить устройство от серьезных поломок.

Спасатели, работающие на подобных аппаратах в Канаде, ремонтируют их быстро и грамотно. Что касается подушки, то ее реально отремонтировать в условиях обычного гаража.

Подобная модель будет надежной, если:

  • Используемые материалы и детали были надлежащего качества.
  • На аппарате установлен новый двигатель.
  • Все соединения и крепления выполнены надежно.
  • Изготовитель обладает всеми необходимыми навыками.

Если СВП изготавливается как игрушка для ребенка, то в данном случае желательно, чтобы присутствовали данные хорошего конструктора. Хотя и это не показатель для того, чтобы детей сажать за руль этого транспортного средства. Это ведь не автомобиль и не лодка. Управлять СВП не так просто, как кажется.

С учетом этого фактора, нужно сразу приступать к изготовлению двухместного варианта, чтобы контролировать действия того, кто будет сидеть за рулем.

Как построить сухопутный катер на воздушной подушке

Окончательной конструкцией, как и неформальным названием нашей поделки, мы обязаны коллеге из газеты «Ведомости». Увидев один из испытательных «взлетов» на парковке издательства, она воскликнула: «Да это же ступа Бабы-яги!» Такое сравнение нас несказанно обрадовало: ведь мы как раз искали способ оснастить наш катер на воздушной подушке рулем и тормозом, и способ нашелся сам собой - мы дали в руки пилоту метлу!

На вид это одна из самых глупых поделок, которые мы когда-либо создавали. Но, если вдуматься, она представляет собой весьма зрелищный физический эксперимент: оказывается, слабенький воздушный поток от ручной воздуходувки, предназначенной для сметания невесомых жухлых листьев с дорожек, способен вознести над землей человека и с легкостью перемещать его в пространстве. Несмотря на весьма внушительный вид, построить такой катер проще простого: при четком соблюдении инструкций это потребует всего пару часов непыльной работы.

Вертолет и шайба

Вопреки распространенному заблуждению, катер опирается вовсе не на 10-сантиметровый слой сжатого воздуха, иначе это был бы уже вертолет. Воздушная подушка представляет собой что-то вроде надувного матраса. Полиэтиленовая пленка, которой затянуто днище аппарата, заполняется воздухом, растягивается и превращается в подобие надувного круга.

Пленка очень плотно прилегает к поверхности дороги, образуя широкое пятно контакта (практически по всей площади днища) с отверстием в центре. Из этого отверстия поступает воздух под давлением. По всей площади контакта между пленкой и дорогой образуется тончайший слой воздуха, по которому аппарат легко скользит в любом направлении. Благодаря надувной юбке даже небольшого количества воздуха достаточно для хорошего скольжения, так наша ступа гораздо больше похожа на шайбу в аэрохоккее, чем на вертолет.

Ветер под юбкой

Обычно мы не печатаем в рубрике «мастер-класс» точных чертежей и настоятельно рекомендуем читателям подключать к процессу творческое воображение, как можно больше экспериментируя с конструкцией. Но это не тот случай. Несколько попыток слегка отступить от популярного рецепта стоили редакции пары дней лишней работы. Не повторяйте наших ошибок - четко следуйте инструкции.

Катер должен быть круглым, как летающая тарелка. Судну, опирающемуся на тончайшую прослойку воздуха, необходим идеальный баланс: при малейшем дефекте развесовки весь воздух будет выходить с недогруженной стороны, а более тяжелый борт всем весом ляжет на землю. Симметричная круглая форма днища поможет пилоту легко находить баланс, слегка изменяя положение тела.

Для изготовления днища возьмите 12-миллиметровую фанеру, с помощью веревки и маркера начертите круг диаметром 120 см и выпилите деталь электрическим лобзиком. Юбка делается из полиэтиленовой душевой шторки. Выбор шторки - пожалуй, самый ответственный этап, на котором решается судьба будущей поделки. Полиэтилен должен быть как можно более толстым, но строго однородным и ни в коем случае не армированным тканью или декоративными лентами. Клеенка, брезент и прочие воздухонепроницаемые ткани не подходят для постройки судна на воздушной подушке.

В погоне за прочностью юбки мы совершили нашу первую ошибку: плохо тянущаяся клеенчатая скатерть не смогла плотно прижаться к дороге и сформировать широкое пятно контакта. Площади небольшого «пятнышка» не хватило, чтобы заставить тяжелую машину скользить.

Оставлять припуск, чтобы впустить под плотную юбку больше воздуха, - не выход. При надувании такая подушка образует складки, которые будут выпускать воздух и препятствовать образованию равномерной пленки. А вот плотно прижатый к днищу полиэтилен, растягиваясь при нагнетании воздуха, образует идеально гладкий пузырь, плотно облегающий любые неровности дороги.

Скотч - всему голова

Изготовить юбку несложно. Надо расстелить полиэтилен на верстаке, накрыть сверху круглой фанерной заготовкой с предварительно просверленным отверстием для подачи воздуха и тщательно закрепить юбку мебельным степлером. С задачей справится даже самый простой механический (не электрический) степлер с 8-миллиметровыми скобами.

Армированный скотч - очень важный элемент юбки. Он укрепляет ее там, где необходимо, сохраняя эластичность остальных участков. Обратите особое внимание на усиление полиэтилена под центральной «пуговицей» и в области отверстий для подачи воздуха. Скотч накладывайте с 50%-ным перекрытием и в два слоя. Полиэтилен должен быть чистым, иначе скотч может отклеиться.

Недостаточное усиление в центральной части стало причиной забавной аварии. Юбка порвалась в районе «пуговицы», и наша подушка превратилась из «бублика» в полукруглый пузырь. Пилот с округлившимися от удивления глазами вознесся на добрые полметра над землей и спустя пару мгновений рухнул вниз - юбка окончательно лопнула и выпустила весь воздух. Именно этот инцидент привел нас к ошибочной мысли использовать вместо душевой шторки клеенку.

Еще одно заблуждение, постигшее нас в процессе строительства катера, заключалось в уверенности, что мощности много не бывает. Мы раздобыли большую ранцевую воздуходувку Hitachi RB65EF с объемом двигателя 65 см 3 . У этой зверь-машины есть одно веское преимущество: она комплектуется гофрированным шлангом, с помощью которого очень легко подключить вентилятор к юбке. А вот мощность 2,9 кВт - явный перебор. Полиэтиленовой юбке нужно давать ровно такой объем воздуха, которого будет достаточно для подъема машины на 5−10 см над землей. Если переборщить с газом, полиэтилен не выдержит давления и порвется. Именно так и случилось с нашей первой машиной. Так что будьте уверены: если в вашем распоряжении есть хоть какая-нибудь воздуходувка, она подойдет для проекта.

Полный вперед!

Обычно у судов на воздушной подушке есть как минимум два винта: один маршевый, сообщающий машине поступательное движение вперед, и один вентилятор, нагнетающий воздух под юбку. Как же наша «летающая тарелка» будет двигаться вперед, и сможем ли мы обойтись одной воздуходувкой?

Этот вопрос мучил нас ровно до первых успешных испытаний. Оказалось, юбка так хорошо скользит по поверхности, что даже малейшего изменения баланса достаточно, чтобы аппарат сам собой поехал в ту или иную сторону. По этой причине устанавливать на машину кресло нужно только на ходу, чтобы правильно сбалансировать машину, и лишь затем привинтить ножки к днищу.

Мы попробовали вторую воздуходувку в качестве маршевого двигателя, но результат не впечатлил: узкое сопло дает быстрый поток, но объема проходящего через него воздуха недостаточно, чтобы создать мало-мальски заметную реактивную тягу. Что вам действительно понадобится при движении, так это тормоз. Вот на эту роль идеально подходит метла Бабы-яги.

Назвался судном - полезай в воду

К сожалению, наша редакция, а вместе с ней и мастерская располагаются в каменных джунглях, вдали даже от самых скромных водоемов. Поэтому мы не смогли спустить наш аппарат на воду. А ведь теоретически все должно работать! Если постройка катера станет для вас дачным развлечением в жаркий летний день, испытайте его на мореходность и поделитесь с нами рассказом о своих успехах. Разумеется, выводить катер на воду нужно с пологого берега на крейсерском дросселе, с полностью надутой юбкой. Допустить потопление никак нельзя - погружение в воду означает неминуемую гибель воздуходувки от гидроудара.

Что говорит закон об оплате за капитальный ремонт, есть ли льготы пенсионерам? Компенсация взносов - сколько должны платить пенсионеры? С начала 2016 года вступил в силу Федеральный Закон № 271 «О капитальном ремонте в […] Увольнение по собственному желанию Увольнение по собственному желанию (другими словами, по инициативе работника) - одно из самых распространенных оснований расторжения трудового договора. Инициатива прекращения трудовых […]



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ