Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Контактная сеть представляет собой комплекс устройств для передачи электроэнергии от тяговых подстанций к ЭПС через токоприемники. Она является частью тяговой сети и для рельсового электрифицированного транспорта обычно служит ее фазой (при переменном токе) или полюсом (при постоянном токе); другой фазой (или полюсом) служит рельсовая сеть. Контактная сеть может быть выполнена с контактным рельсом или с контактной подвеской.
В контактной сети с контактной подвеской основными являются следующие элементы: провода – контактный провод, несущий трос, усиливающий провод и пр.; опоры; поддерживающие и фиксирующие устройства; гибкие и жесткие поперечины (консоли, фиксаторы); изоляторы и арматура различного назначения.
Контактную сеть с контактной подвеской классифицируют по видам электрифицированного транспорта, для которого она предназначена, – ж.-д. магистрального, городского (трамвая, троллейбуса), карьерного, рудничного подземного рельсового транспорта и др.; по роду тока и номинальному напряжению питающегося от сети ЭПС; по размещению контактной подвески относительно оси рельсового пути – для центрального токосъема (на магистральном ж.-д. транспорте) или бокового (на путях промышленного транспорта); по типам контактной подвески – с простой, цепной или специальной; по особенностям выполнения анкеровки контактного провода и несущего троса, сопряжений анкерных участков и др.
Контактная сеть предназначена для работы на открытом воздухе и поэтому подвержена воздействию климатических факторов, к которым относятся: температура окружающей среды, влажность и давление воздуха, ветер, дождь, иней и гололед, солнечная радиация, содержание в воздухе различных загрязнений. К этому необходимо добавить тепловые процессы, возникающие при протекании тягового тока по элементам сети, механическое воздействие на них со стороны токоприемников, электрокоррозионные процессы, многочисленные циклические механические нагрузки, износ и др. Все устройства контактной сети должны быть способны противостоять действию перечисленных факторов и обеспечивать высокое качество токосъема в любых условиях эксплуатации.
В отличие от других устройств электроснабжения, контактная сеть не имеет резерва, поэтому к ней по надежности предъявляют повышенные требования, с учетом которых осуществляются ее проектирование, строительство и монтаж, техническое обслуживание и ремонт.

Проектирование контактной сети

При проектировании контактной сети (КС) выбирают число и марку проводов, исходя из результатов расчетов системы тягового электроснабжения, а также тяговых расчетов; определяют тип контактной подвески в соответствии с максимальными скоростями движения ЭПС и другими условиями токосъема; находят длины пролета (гл. обр. по условиям обеспечения ее ветроустойчивости, а при высоких скоростях движения – и заданного уровня неравномерности эластичности); выбирают длину анкерных участков, типы опор и поддерживающих устройств для перегонов и станций; разрабатывают конструкции КС в искусственных сооружениях; размещают опоры и составляют планы контактной сети на станциях и перегонах с согласованием зигзагов проводов и учетом выполнения воздушных стрелок и элементов секционирования контактной сети (изолирующих сопряжений анкерных участков и нейтральных вставок, секционных изоляторов и разъединителей).
Основные размеры (геометрические показатели), характеризующие размещение контактной сети относительно других устройств, – высота Н подвешивания контактного провода над уровнем верха головки рельса; расстояние А от частей, находящихся под напряжением, до заземленных частей сооружений и подвижного состава; расстояние Г от оси крайнего пути до внутреннего края опор, находящегося на уровне головок рельсов, – регламентированы и в значительной мере определяют конструктивное выполнение элементов контактной сети (рис. 8.9).

Совершенствование конструкций контактной сети направлено на повышение ее надежности при снижении стоимости строительства и эксплуатации. Железобетонные опоры и фундаменты металлических опор выполняют с защитой от электрокоррозионного воздействия на их арматуру блуждающих токов. Увеличение срока службы контактных проводов достигается, как правило, применением на токоприемниках вставок с высокими антифрикционными свойствами (угольных, в т. ч. металлосодержащих; металлокерамических и др.), выбором рациональной конструкции токоприемников, а также оптимизацией режимов токосъема.
Для повышения надежности контактной сети осуществляют плавку гололеда, в т.ч. без перерыва движения поездов; применяют ветроустойчивые контактные подвески и т. д. Оперативности выполнения работ на контактной сети способствует применение телеуправления для дистанционного переключения секционных разъединителей.

Анкеровка проводов

Анкеровка проводов – прикрепление проводов контактной подвески через включенные в них изоляторы и арматуру к анкерной опоре с передачей на нее их натяжения. Анкеровка проводов бывает некомпенсированная (жесткая) или компенсированная (рис. 8.16) через компенсатор, изменяющий длину провода в случае изменения его температуры при сохранении заданного натяжения.

В середине анкерного участка контактной подвески выполняется средняя анкеровка (рис. 8.17), которая препятствует нежелательным продольным перемещениям в сторону одной из анкеровок и позволяет ограничить зону повреждения контактной подвески при обрыве одного из ее проводов. Трос средней анкеровки прикрепляют к контактному проводу и несущему тросу соответствующей арматурой.

Компенсация натяжения проводов

Компенсация натяжения проводов (автоматическое регулирование) контактной сети при изменении их длины в результате температурных воздействий осуществляется компенсаторами различных конструкций -блочно-грузовыми, с барабанами различного диаметра, гидравлическими, газогидравлическими, пружинными и др.
Наиболее простым является блочно-грузовой компенсатор, состоящий из груза и нескольких блоков (полиспаста), через которые груз присоединяют к анкеруемому проводу. Наибольшее распространение получил трех-блочный компенсатор (рис. 8.18), в котором неподвижный блок закреплен на опоре, а два подвижных вложены в петли, образуемые тросом, несущим груз и закрепленным другим концом в ручье неподвижного блока. Анкеруемый провод через изоляторы прикреплен к подвижному блоку. В этом случае вес груза составляет 1/4 номинального натяжения (обеспечивается передаточное отношение 1:4), но перемещение груза вдвое больше, чем у двух-6лочного компенсатора (с одним подвижным блоком).

компенсаторах с барабанами разного диаметра (рис. 8.19) на барабан малого диаметра наматываются тросы, связанные с анкеру емыми проводами, а на барабан большего диаметра – трос, связанный с гирляндой грузов. Тормозное устройство служит для предотвращения повреждений контактной подвески при обрыве провода.

При особых условиях эксплуатации, особенно при ограниченных габаритах в искусственных сооружениях, незначительных перепадах температуры нагрева проводов и т. д., применяют компенсаторы и других типов для проводов контактной подвески, фиксирующих тросов и жестких поперечин.

Фиксатор контактного провода
Фиксатор контактного провода – устройство для фиксации положения контактного провода в горизонтальной плоскости относительно оси токоприемников. На криволинейных участках, где уровни головок рельсов различны и ось токоприемника не совпадает с осью пути, применяют несочлененные и сочлененные фиксаторы.
Несочлененный фиксатор имеет один стержень, оттягивающий контактный провод от оси токоприемника к опоре (растянутый фиксатор) или от опоры (сжатый фиксатор) на размер зигзага. На электрифицированных ж. д. несочлененные фиксаторы применяют очень редко (в анкеруемых ветвях контактной подвески, на некоторых воздушных стрелках), т. к. образующаяся при этих фиксаторах «жесткая точка» на контактном проводе ухудшает токосъем.

Сочлененный фиксатор состоит из трех элементов: основного стержня, стойки и дополнительного стержня, на конце которого крепится фиксирующий зажим контактного провода (рис. 8.20). Вес основного стержня не передается на контактный провод, и он воспринимает только часть веса дополнительного стержня с фиксирующим зажимом. Стержни имеют форму, обеспечивающую надежный проход токоприемников при отжатии ими контактного провода. Для скоростных и высокоскоростных линий применяют облегченные дополнительные стержни, например, выполненные из алюминиевых сплавов. При двойном контактном проводе на стойке устанавливают два дополнительных стержня. На внешней стороне кривых малых радиусов монтируют гибкие фиксаторы в виде обычного дополнительного стержня, который через трос и изолятор крепят к кронштейну, стойке или непосредственно к опоре. На гибких и жестких поперечинах с фиксирующими тросами обычно используют полосовые фиксаторы (по аналогии с дополнительным стержнем), закрепленные шарнирно зажимами с ушком, установленным на фиксирующем тросе. На жестких поперечинах можно также крепить фиксаторы на специальных стойках.

Анкерный участок

Анкерный участок – участок контактной подвески, границами которого являются анкерные опоры. Деление контактной сети на анкерные участки необходимо для включения в провода устройств, поддерживающих натяжение проводов при изменении их температуры и осуществления продольного секционирования контактной сети. Это деление уменьшает зону повреждения в случае обрыва проводов контактной подвески, облегчает монтаж, техн. обслуживание и ремонт контактной сети. Длина анкерного участка ограничивается допустимыми отклонениями от задаваемого компенсаторами номинального значения натяжения проводов контактной подвески.
Отклонения вызваны изменениями положения струн, фиксаторов и консолей. Например, при скоростях движения до 160 км/ч максимальная длина анкерного участка при двусторонней компенсации на прямых участках не превышает 1600 м, а при скоростях 200 км/ч допускается не более 1400 м. В кривых длина анкерных участков уменьшается тем больше, чем больше протяженность кривой и меньше ее радиус. Для перехода с одного анкерного участка на следующий выполняют неизолирующие и изолирующие сопряжения.

Сопряжение анкерных участков

Сопряжение анкерных участков – функциональное объединение двух смежных анкерных участков контактной подвески, обеспечивающее удовлетворительный переход токоприемников ЭПС с одного из них на другой без нарушения режима токосъема благодаря соответствующему размещению в одних и тех же (переходных) пролетах контактной сети конца одного анкерного участка и начала другого. Различают сопряжения неизолирующие (без электрического секционирования контактной сети) и изолирующие (с секционированием).
Неизолирующие сопряжения выполняют во всех случаях, когда требуется включить в провода контактной подвески компенсаторы. При этом достигается механическая независимость анкерных участков. Такие сопряжения монтируют в трех (рис. 8.21,а) и реже в двух пролетах. На высокоскоростных магистралях сопряжения иногда выполняют в 4-5 пролетах из-за более высоких требований к качеству токосъема. На неизолирующих сопряжениях имеются продольные электрические соединители, площадь сечения которых должна быть эквивалентна площади сечения проводов контактной сети.

Изолирующие сопряжения применяют при необходимости секционирования контактной сети, когда, кроме механической, нужно обеспечить и электрическую независимость сопрягаемых участков. Такие сопряжения устраивают с нейтральными вставками (участками контактной подвески, на которых нормально напряжение отсутствует) и без них. В последнем случае обычно применяют трех-или четырехпролетные сопряжения, располагая контактные провода сопрягаемых участков в среднем пролете (пролетах) на расстоянии 550 мм один от другого (рис. 8.21,6). При этом образуется воздушный промежуток, который совместно с изоляторами, включенными в приподнятые контактные подвески у переходных опор, обеспечивает электрическую независимость анкерных участков. Переход полоза токоприемника с контактного провода одного анкерного участка на другой происходит так же, как и при неизолирующем сопряжении. Однако, когда токоприемник находится в среднем пролете, электрическая независимость анкерных участков нарушается. Если такое нарушение недопустимо, применяют нейтральные вставки разной длины. Ее выбирают такой, чтобы при нескольких поднятых токоприемниках одного поезда было исключено одновременное перекрытие обоих воздушных промежутков, что привело бы к замыканию проводов, питающихся от разных фаз и находящихся под различными напряжениями. Сопряжение с нейтральной вставкой во избежание пережога контактного провода ЭПС проходит на выбеге, для чего за 50 м до начала вставки устанавливают сигнальный знак «Отключить ток», а после конца вставки при электровозной тяге через 50 м и при моторвагонной тяге через 200 м – знак «Включить ток» (рис. 8.21,в). На участках со скоростным движением необходимы автоматические средства отключения тока на ЭПС. Чтобы можно было вывести поезд при его вынужденной остановке под нейтральной вставкой, предусмотрены секционные разъединители для временной подачи напряжения на нейтральную вставку со стороны направления движения поезда.

Секционирование контактной сети
Секционирование контактной сети – разделение контактной сети на отдельные участки (секции), электрически разъединенные изолирующими сопряжениями анкерных участков или секционными изоляторами. Изоляция может быть нарушена во время прохода токоприемника ЭПС по границе раздела секций; если такое замыкание недопустимо (при питании смежных секций от различных фаз или принадлежности их к различным системам тягового электроснабжения), между секциями размещают нейтральные вставки. В условиях эксплуатации электрическое соединение отдельных секций осуществляют, включая секционные разъединители, установленные в соответствующих местах. Секционирование необходимо также для надежной работы устройств электроснабжения в целом, оперативного технического обслуживания и ремонта контактной сети с отключением напряжения. Схема секционирования предусматривает такое взаимное расположение секций, при котором отключение одной из них в наименьшей степени влияет на организацию движения поездов.
Секционирование контактной сети бывает продольным и поперечным. При продольном секционировании осуществляют разделение контактной сети каждого главного пути вдоль электрифицированной линии у всех тяговых подстанций и постов секционирования. В отдельные продольные секции выделяют контактную сеть перегонов, подстанций, разъездов и обгонных пунктов. На крупных станциях, имеющих несколько электрифицированных парков или групп путей, контактная сеть каждого парка или групп путей образует самостоятельные продольные секции. На очень крупных станциях иногда выделяют в отдельные секции контактную сеть одной или обеих горловин. Секционируют также контактную сеть в протяженных тоннелях и на некоторых мостах с ездой понизу. При поперечном секционировании осуществляют разделение контактной сети каждого из главных путей на всем протяжении электрифицированной линии. На станциях, имеющих значительное путевое развитие, применяют дополнительное поперечное секционирование. Число поперечных секций определяется числом и назначением отдельных путей, а в ряде случаев и режимами трогания ЭПС, когда необходимо использовать площадь сечения контактных подвесок соседних путей.
Секционирование с обязательным заземлением отключенной секции контактной сети предусматривают для путей, на которых могут находиться люди на крышах вагонов или локомотивов, либо путей, вблизи которых работают подъемно-транспортные механизмы (погрузочно-разгрузочные, экипировочные пути и др.). Для обеспечения большей безопасности работающих в этих местах соответствующие секции контактной сети соединяют с другими секциями секционными разъединителями с заземляющими ножами; эти ножи заземляют отключаемые секции при отключении разъединителей.

На рис. 8.22 приведен пример схемы питания и секционирования станции, расположенной на двухпутном участке линии, электрифицированной на переменном токе. На схеме показаны семь секций – четыре на перегонах и три на станции (одна из них с обязательным заземлением при ее отключении). Контактная сеть путей левого перегона и станции получает питание от одной фазы энергосистемы, а путей правого перегона – от другой. Соответственно выполнено секционирование с помощью изолирующих сопряжений и нейтральных вставок. На участках, где требуется плавка гололеда, на нейтральной вставке устанавливают два секционных разъединителя с моторными приводами. Если плавка гололеда не предусмотрена, достаточно одного секционного разъединителя с ручным приводом.

Для секционирования контактной сети главных и боковых сетей на станциях применяют секционные изоляторы. В некоторых случаях секционные изоляторы используют для образования на контактной сети переменного тока нейтральных вставок, которые ЭПС проходит, не потребляя тока, а также на путях, где длина съездов недостаточна для размещения изолирующих сопряжений.
Соединение и разъединение различных секций контактной сети, а также соединение с питающими линиями осуществляют с помощью секционных разъединителей. На линиях переменного тока, как правило, применяют разъединители горизонтально-поворотного типа, на линиях постоянного тока – вертикально-рубящего. Управляют разъединителем дистанционно с пультов, установленных в дежурном пункте района контактной сети, в помещениях дежурных по станциям и в других местах. Наиболее ответственные и часто переключаемые разъединители установлены в сети диспетчерского телеуправления.
Различают разъединители продольные (для соединения и разъединения продольных секций контактной сети), поперечные (для соединения и разъединения ее поперечных секций), фидерные и др. Их обозначают буквами русского алфавита (например, продольные -А, Б, В, Г; поперечные – П; фидерные – Ф) и цифрами, соответствующими номерам путей и секций контактной сети (например, П23).
Для обеспечения безопасности проведения работ на отключенной секции контактной сети или вблизи нее (в депо, на путях экипировки и осмотра крышевого оборудования ЭПС, на путях погрузки и разгрузки вагонов и др.) устанавливают разъединители с одним заземляющим ножом.

Воздушная стрелка

Воздушная стрелка – образована пересечением двух контактных подвесок над стрелочным переводом; предназначена для обеспечения плавного и надежного прохода токоприемника с контактного провода одного пути на контактный провод другого. Пересечение проводов осуществляется наложением одного провода (как правило, примыкающего пути) на другой (рис. 8.23). Для подъема обоих проводов при подходе токоприемника к воздушной стрелке на нижнем проводе укреплена ограничительная металлическая труба длиной 1-1,5 м. Верхний провод располагают между трубкой и нижним проводом. Пересечение контактных проводов над одиночным стрелочным переводом осуществляют со смещением каждого провода к центру от осей путей на 360-400 мм и располагают там, где расстояние между внутренними гранями головок соединительных рельсов крестовины составляет 730-800 мм. На перекрестных стрелочных переводах и при т. н. глухих пересечениях провода перекрещиваются над центром стрелочного перевода или пересечения. Воздушные стрелки выполняют, как правило, фиксированными. Для этого на опорах устанавливают фиксаторы, удерживающие контактные провода в заданном положении. На станционных путях (кроме главных) стрелки могут быть выполнены нефиксированными, если провода над стрелочным переводом располагаются в положении, заданном регулировкой зигзагов у промежуточных опор. Струны контактной подвески, находящиеся вблизи стрелок, должны быть двойными. Электрический контакт между контактными подвесками, образующими воздушную стрелку, обеспечивает электрический соединитель, установленный на расстоянии 2-2,5 м от места пересечения со стороны остряка. Для повышения надежности применяют конструкции стрелок с дополнительными перекрестными связями между проводами обеих контактных подвесок и скользящие поддерживающие двойные струны.

Опоры контактной сети

Опоры контактной сети – конструкции для закрепления поддерживающих и фиксирующих устройств контактной сети, воспринимающие нагрузку от ее проводов и других элементов. В зависимости от вида поддерживающего устройства опоры разделяют на консольные (однопутного и двухпутного исполнения); стойки жестких поперечин (одиночные или спаренные); опоры гибких поперечин; фидерные (с кронштейнами только для питающих и отсасывающих проводов). Опоры, на которых отсутствуют поддерживающие, но имеются фиксирующие устройства, называются фиксирующими. Консольные опоры разделяют на промежуточные – для крепления одной контактной подвески; переходные, устанавливаемые на сопряжениях анкерных участков,- для крепления двух контактных проводов; анкерные, воспринимающие усилие от анкеровки проводов. Как правило, опоры выполняют одновременно несколько функций. Например, опора гибкой поперечины может быть анкерной, на стойках жесткой поперечины могут быть подвешены консоли. К стойкам опор можно закрепить кронштейны для усиливающих и других проводов.
Опоры изготавливают железобетонными, металлическими (стальными) и деревянными. На отечественных ж. д. применяют в основном опоры из предварительно напряженного железобетона (рис. 8.24), конические центрифугированные, стандартной длины 10,8; 13,6; 16,6 м. Металлические опоры устанавливают в тех случаях, когда по несущей способности или по размерам невозможно использовать железобетонные (например, в гибких поперечинах), а также на линиях с высокоскоростным движением, где предъявляются повышенные требования к надежности опорных конструкций. Деревянные опоры применяют только как временные.

Для участков постоянного тока железобетонные опоры изготавливают с дополнительной стержневой арматурой, расположенной в фундаментной части опор и предназначенной для уменьшения повреждений арматуры опор электрокоррозией, вызываемой блуждающими токами. В зависимости от способа установки железобетонные опоры и стойки жестких поперечин бывают раздельные и нераздельные, устанавливаемые непосредственно в грунт. Требуемая устойчивость нераздельных опор в грунте обеспечивается верхним лежнем или опорной плитой. В большинстве случаев применяют нераздельные опоры; раздельные используют при недостаточной устойчивости нераздельных, а также при наличии грунтовых вод, затрудняющих установку нераздельных опор. В анкерных железобетонных опорах применяют оттяжки, которые устанавливают вдоль пути под углом 45° и крепят к железобетонным анкерам. Железобетонные фундаменты в надземной части имеют стакан глубиной 1,2 м, в который устанавливают опоры и затем заделывают пазухи стакана цементным раствором. Для заглубления фундаментов и опор в грунт используют преимущественно способ вибропогружения.
Металлические опоры гибких поперечин изготавливают обычно четырехгранной пирамидальной формы, их стандартная длина 15 и 20 м. Продольные вертикальные стойки из углового проката соединяют треугольной решеткой, выполненной также из уголка. В районах, отличающихся повышенной атмосферной коррозией, металлические консольные опоры длиной 9,6 и 11 м закрепляют в грунте на железобетонных фундаментах. Консольные опоры устанавливают на призматических трехлучевых фундаментах, опоры гибких поперечин – либо на раздельных железобетонных блоках, либо на свайных фундаментах с ростверками. Основание металлических опор соединяют с фундаментами анкерными болтами. Для закрепления опор в скальных грунтах, пучинистых грунтах районов вечной мерзлоты и глубокого сезонного промерзания, в слабых и заболоченных грунтах и т. п. применяют фундаменты специальных конструкций.

Консоль

Консоль – поддерживающее устройство, закрепленное на опоре, состоящее из кронштейна и тяги. В зависимости от числа перекрываемых путей консоль может быть одно-, двух- и реже многопутной. Для исключения механической связи между контактными подвесками различных путей и повышения надежности чаще используют однопутные консоли. Применяют неизолированные, или заземленные консоли, при которых изоляторы находятся между несущим тросом и кронштейном, а также в стержне фиксатора, и изолированные консоли с изоляторами, размещенными в кронштейнах и тягах. Неизолированные консоли (рис. 8.25) по форме могут быть изогнутыми, наклонными и горизонтальными. Для опор, установленных с увеличенным габаритом, применяют консоли с подкосами. На сопряжениях анкерных участков при монтаже на одной опоре двух консолей используют специальную траверсу. Горизонтальные консоли применяют в тех случаях, когда высота опор достаточна для закрепления наклонной тяги.

При изолированных консолях (рис. 8.26) возможно проводить работы на несущем тросе вблизи них без отключения напряжения. Отсутствие изоляторов на неизолированных консолях обеспечивает большую стабильность положения несущего троса при различных механических воздействиях, что благоприятно сказывается на процессе токосъема. Кронштейны и тяги консолей крепят на опорах с помощью пят, допускающих их поворот вдоль оси пути на 90° в обе стороны относительно нормального положения.

Гибкая поперечина

Гибкая поперечина – поддерживающее устройство для подвешивания и фиксации проводов контактной сети, расположенных над несколькими путями. Гибкая поперечина представляет собой систему тросов, натянутых между опорами поперек электрифицированных путей (рис. 8.27). Поперечные несущие тросы воспринимают все вертикальные нагрузки от проводов цепных подвесок, самой поперечины и других проводов. Стрела провеса этих тросов должна быть не менее Vio длины пролета между опорами: это уменьшает влияние температуры на высоту крепления контактных подвесок. Для повышения надежности поперечин используют не менее двух поперечных несущих тросов.

Фиксирующие тросы воспринимают горизонтальные нагрузки (верхний – от несущих тросов цепных подвесок и других проводов, нижний – от контактных проводов). Электрическая изоляция тросов от опор позволяет обслуживать контактную сеть без отключения напряжения. Все тросы для регулирования их длины закрепляют на опорах с помощью стальных штанг с резьбой; в некоторых странах с этой целью применяют специальные демпферы, преимущественно для крепления контактной подвески на станциях.

Токосъем

Токосъем – процесс передачи электрической энергии от контактного провода или контактного рельса к электрооборудованию движущегося или неподвижного ЭПС через токоприемник, обеспечивающий скользящий (на магистральном, промышленном и большей части городского электротранспорта) или катящийся (на некоторых видах ЭПС городского электротранспорта) электрический контакт. Нарушение контакта при токосъеме приводит к возникновению бесконтактной электродуговой эрозии, следствием чего является интенсивный износ контактного провода и контактных вставок токоприемника. При перегрузке точек контакта током в режиме движения возникают контактная электровзрывная эрозия (искрение) и повышенный износ контактирующих элементов. Длительная перегрузка контакта рабочим током или током КЗ при стоянке ЭПС может привести к пережогу контактного провода. Во всех этих случаях необходимо ограничивать нижний предел контактного нажатия для заданных условий эксплуатации. Чрезмерное контактное нажатие, в т.ч. в результате аэродинамического воздействия на токоприемник, повышение динамической составляющей и вызванное ими увеличение вертикального отжатия провода, особенно у фиксаторов, на воздушных стрелках, в местах сопряжения анкерных участков и в зоне искусственных сооружений, может снизить надежность контактной сети и токоприемников, а также увеличить интенсивность изнашивания провода и контактных вставок. Следовательно, верхний предел контактного нажатия также необходимо нормировать. Оптимизацию режимов токосъема обеспечивают скоординированные требования к устройствам контактной сети и токоприемникам, что гарантирует высокую надежность их эксплуатации при минимальных приведенных расходах.
Качество токосъема может определяться разными показателями (числом и продолжительностью нарушений механического контакта на расчетном участке пути, степенью стабильности контактного нажатия, близкой к оптимальному значению, интенсивностью изнашивания контактных элементов и др.), которые в значительной мере зависят от конструктивного выполнения взаимодействующих систем – контактной сети и токоприемников, их статических, динамических, аэродинамических, демпфирующих и других характеристик. Несмотря на то, что процесс токосъема зависит от большого числа случайных факторов, результаты исследований и опыт эксплуатации позволяют выявить основополагающие принципы создания систем токосъема с требуемыми свойствами.

Жесткая поперечина

Жесткая поперечина – служит для подвешивания проводов контактной сети, расположенных над несколькими (2-8) путями. Жесткая поперечина выполняется в виде блочной металлической конструкции (ригеля), установленной на двух опорах (рис. 8.28). Такие поперечины используют также для разрекрываемого пролета. Ригель со стойками соединен шарнирно или жестко с помощью подкосов, позволяющих разгрузить его в середине пролета и уменьшить расход стали. При размещении на ригеле осветительных приборов на нем выполняют настил с перилами; предусматривают лестницу для подъема на опоры обслуживающего персонала. Устанавливают жесткие поперечины гл. обр. на станциях и раздельных пунктах.

Изоляторы

Изоляторы – устройства для изоляции проводов контактной сети, находящихся под напряжением. Различают изоляторы по направлению приложения нагрузок и месту установки – подвесные, натяжные, фиксаторные и консольные; по конструкции – тарельчатые и стержневые; по материалу – стеклянные, фарфоровые и полимерные; к изоляторам относят также изолирующие элементы
Подвесные изоляторы – фарфоровые и стеклянные тарельчатые – обычно соединяют в гирлянды по 2 на линиях постоянного тока и по 3-5 (в зависимости от загрязнения воздуха) на линиях переменного тока. Натяжные изоляторы устанавливают в анкеровках проводов, в несущих тросах над секционными изоляторами, в фиксирующих тросах гибких и жестких поперечин. Фиксаторные изоляторы (рис. 8.29 и 8.30) отличаются от всех других наличием внутренней резьбы в отверстии металлической шапки для закрепления трубы. На линиях переменного тока применяют обычно стержневые изоляторы, а постоянного – и тарельчатые. В последнем случае в основной стержень сочлененного фиксатора включают еще один тарельчатый изолятор с серьгой. Консольные фарфоровые стержневые изоляторы (рис. 8.31) устанавливают в подкосах и тягах изолированных консолей. Эти изоляторы должны иметь повышенную механическую прочность, т. к. работают на изгиб. В секционных разъединителях и роговых разрядниках применяют обычно фарфоровые стержневые, реже тарельчатые изоляторы. В секционных изоляторах на линиях постоянного тока используют полимерные изолирующие элементы в виде прямоугольных брусков из пресс-материала, а на линиях переменного тока -в виде цилиндрических стеклопластиковых стержней, на которые надеты электрозащитные чехлы из фторопластовых труб. Разработаны полимерные стержневые изоляторы с сердечниками из стеклопластика и ребрами из кремнийорганического эластомера. Их применяют в качестве подвесных, секционирующих и фиксаторных; они перспективны для установки в подкосах и тягах изолированных консолей, в тросах гибких поперечин и т. п. В зонах промышленного загрязнения воздуха и в некоторых искусственных сооружениях проводится периодическая очистка (обмывка) фарфоровых изоляторов с помощью специальных передвижных средств.

Контактная подвеска

Контактная подвеска – одна из ос новных частей контактной сети, представляет собой систему проводов, взаимное расположение которых, способ механического соединения, материал и сечение обеспечивают необходимое качество токосъема. Конструкция контактной подвески (КП) определяется экономической целесообразностью, эксплуатационными условиями (максимальной скоростью движения ЭПС, наибольшей силой тока, снимаемого токоприемниками), климатическими условиями. Необходимость обеспечения надежного токосъема при возрастающих скоростях движения и мощности ЭПС определила тенденции изменения конструкций подвесок: сначала простые, затем одинарные с простыми струнами и более сложные – рессорные одинарные, двойные и специальные, в которых для обеспечения требуемого эффекта, гл. обр. выравнивания вертикальной эластичности (или жесткости) подвески в пролете, используются пространственно-вантовые системы с дополнительным тросом или другие.
При скоростях движения до 50 км/ч удовлетворительное качество токосъема обеспечивает простая контактная подвеска, состоящая только из контактного провода, подвешенного к опорам А и В контактной сети (рис. 8.10,а) или поперечным тросам.

Качество токосъема во многом определяется стрелой провеса провода, зависящей от результирующей нагрузки на провод, которая складывается из собственного веса провода (при гололеде вместе со льдом) и ветровой нагрузки, а также от длины пролета и натяжения провода. На качество токосъема большое влияние оказывает угол а (чем он меньше, тем хуже качество токосъема), значительно изменяется контактное нажатие, появляются ударные нагрузки в опорной зоне, происходит усиленный износ контактного провода и токосъемных вставок токоприемника. Несколько улучшить токосъем в опорной зоне можно, применив подвешивание провода в двух точках (рис. 8.10,6), что при определенных условиях обеспечивает надежный токосъем при скоростях движения до 80 км/ч. Заметно улучшить токосъем при простой подвеске можно, только существенно уменьшив длину пролетов с целью снижения стрелы провеса, что в большинстве случаев неэкономично, либо применив специальные провода со значительным натяжением. В связи с этим применяют цепные подвески (рис. 8.11), в которых контактный провод подвешен к несущему тросу с помощью струн. Подвеска, состоящая из несущего троса и контактного провода, называется одинарной; при наличии вспомогательного провода между несущим тросом и контактным проводом – двойной. В цепной подвеске несущий трос и вспомогательный провод участвуют в передаче тягового тока, поэтому они соединены с контактным проводом электрическими соединителями либо токопроводящими струнами.

Основной механической характеристикой контактной подвески принято считать эластичность – отношение высоты подъема контактного провода к приложенной к нему и направленной вертикально вверх силе. Качество токосъема зависит от характера изменения эластичности в пролете: чем она стабильнее, тем лучше токосъем. В простых и обычных цепных подвесках эластичность в середине пролета выше, чем у опор. Выравнивание эластичности в пролете одинарной подвески достигается установкой рессорных тросов длиной 12-20 м, на которых крепят вертикальные струны, а также рациональным расположением обычных струн в средней части пролета. Более постоянной эластичностью обладают двойные подвески, но они дороже и сложнее. Для получения высокого показателя равномерности распределения эластичности в пролете используют различные способы ее повышения в зоне опорного узла (установка пружинных амортизаторов и упругих стержней, торсионный эффект от скручивания троса и др.). В любом случае при разработке подвесок необходимо учитывать их диссипативные характеристики, т. е. устойчивость к воздействию внешних механических нагрузок.
Контактная подвеска является колебательной системой, поэтому при взаимодействии с токоприемниками может находиться в состоянии резонанса, вызванного совпадением или кратностью частот ее собственных колебаний и вынужденных колебаний, определяемых скоростью проследования токоприемника по пролету с заданной длиной. При возникновении резонансных явлений возможно заметное ухудшение токосъема. Предельной для токосъема является скорость распространения механических волн вдоль подвески. В случае превышения этой скорости токоприемнику приходится взаимодействовать как бы с жесткой, недеформируемой системой. В зависимости от нормируемых удельных натяжений проводов подвески такая скорость может составлять 320-340 км/ч.
Простые и цепные подвески состоят из отдельных анкерных участков. Закрепления подвески “на концах анкерных участков могут быть жесткими или компенсированными. На магистральных ж. д. применяют в основном компенсированные и полукомпенсированные подвески. В полукомпенсированных подвесках компенсаторы имеются только в контактном проводе, в компенсированных – еще и в несущем тросе. При этом в случае изменения температуры проводов (вследствие прохождения по ним токов, изменения температуры окружающей среды) стрелы провеса несущего троса, а следовательно, и вертикальное положение контактных проводов остаются неизменными. В зависимости от характера изменения эластичности подвесок в пролете стрелу провеса контактного провода принимают в диапазоне от 0 до 70 мм. Вертикальную регулировку полукомпенсированных подвесок осуществляют так, чтобы оптимальная стрела провеса контактного провода соответствовала среднегодовой (для данного района) температуре окружающего воздуха.
Конструктивную высоту подвески – расстояние между несущим тросом и контактным проводом в точках подвеса – выбирают исходя из технико-экономических соображений, а именно – с учетом высоты опор, соблюдения действующих вертикальных габаритов приближения строений, изоляционных расстояний, особенно в зоне искусственных сооружений и др.; кроме того, должен быть обеспечен минимальный наклон струн при экстремальных значениях температуры окружающего воздуха, когда могут возникнуть заметные продольные перемещения контактного провода относительно несущего троса. Для компенсированных подвесок это возможно, если несущий трос и контактный провод выполнены из различных материалов.
Для увеличения срока службы контактных вставок токоприемников контактный провод располагают в плане с зигзагом. Возможны различные варианты подвески несущего троса: в тех же вертикальных плоскостях, что и контактный провод (вертикальная подвеска), по оси пути (полукосая подвеска), с зигзагами, противоположными зигзагам контактного провода (косая подвеска). Вертикальная подвеска обладает меньшей ветроустойчивостью, косая – наибольшей, но она наиболее сложна при монтаже и обслуживании. На прямых участках пути в основном применяется полукосая подвеска, на криволинейных – вертикальная. На участках с особенно сильными ветровыми нагрузками широко используют ромбовидную подвеску, в которой два контактных провода, подвешенных к общему несущему тросу, располагаются у опор с противоположными зигзагами. В средних частях пролетов провода притянуты один к другому жесткими планками. В некоторых подвесках поперечная устойчивость обеспечивается применением двух несущих тросов, образующих в горизонтальной плоскости своего рода вантовую систему.
За рубежом в основном применяют цепные одинарные подвески, в т. ч. на скоростных участках – с рессорными проводами, простыми разнесенными опорными струнами, а также с несущими тросами и контактными проводами, имеющими повышенные натяжения.

Контактный провод

Контактный провод – наиболее ответственный элемент контактной подвески, непосредственно осуществляющий контакт с токоприемниками ЭПС в процессе токосъема. Как правило, используют один или два контактных провода. Два провода обычно применяют при съеме токов более 1000 А. На отечественных ж. д. применяют контактные провода с площадью сечения 75, 100, 120, реже 150 мм2; за рубежом – от 65 до 194 мм2. Форма сечения провода претерпевала некоторые изменения; в нач. 20 в. профиль сечения приобрел форму с двумя продольными пазами в верхней части – головке, служащими для закрепления на проводе арматуры контактной сети. В отечественной практике размеры головки (рис. 8.12) одинаковы для различных площадей сечения; в других странах размеры головки зависят от площади сечения. В России контактный провод маркируют буквами и цифрами, указывающими материал, профиль и площадь сечения в мм2 (например, МФ-150 – медный фасонный, площадь сечения 150 мм2).

Широкое распространение в последние годы получили низколегированные медные провода с присадками серебра, олова, которые повышают износо- и термостойкость провода. Лучшие показатели по износостойкости (в 2-2,5 раза выше, чем у медного провода) имеют бронзовые медно-кадмиевые провода, однако они дороже медных, а их электрическое сопротивление выше. Целесообразность применения того или иного провода определяется технико-экономическим расчетом с учетом конкретных условий эксплуатации, в частности при решении вопросов обеспечения токосъема на высокоскоростных магистралях. Определенный интерес представляет биметаллический провод (рис. 8.13), подвешиваемый в основном на приемо-отправочных путях станций, а также комбинированный сталеалюминиевый провод (контактная часть – стальная, рис. 8.14).

В процессе эксплуатации происходит изнашивание контактных проводов при токосъеме. Различают электрическую и механическую составляющие износа. Для предотвращения обрыва проводов из-за возрастания растягивающих напряжений нормируется максимальное значение износа (например, для провода с площадью сечения 100 мм допускаемый износ составляет 35 мм2); по мере увеличения износа провода периодически уменьшают его натяжение.
При эксплуатации разрыв контактного провода может произойти в результате термического воздействия электрического тока (дуги) в зоне взаимодействия с другим устройством, т. е. в результате пережога провода. Наиболее часто пережоги контактного провода происходят в следующих случаях: над токоприемниками неподвижного ЭПС вследствие КЗ в его высоковольтных цепях; при подъеме или опускании токоприемника из-за протекания тока нагрузки или КЗ через электрическую дугу; при увеличении контактного сопротивления между проводом и контактными вставками токоприемника; наличии гололеда; замыкании полозом токоприемника раз-нопотеициальных ветвей изолирующего сопряжения анкерных участков и др.
Основными мерами предотвращения пережогов провода являются: повышение чувствительности и быстродействия защиты от токов КЗ; применение на ЭПС блокировки, препятствующей подъему токоприемника под нагрузкой и принудительно отключающей ее при опускании; оборудование изолирующих сопряжений анкерных участков защитными устройствами, способствующими гашению дуги в зоне возможного ее возникновения; своевременные меры, предотвращающие гололедные отложения на проводах, и др.

Несущий трос

Несущий трос – провод цепной подвески, прикрепленный к поддерживающим устройствам контактной сети. К несущему тросу с помощью струн подвешивается контактный провод – непосредственно или через вспомогательный трос.
На отечественных ж. д. на главных путях линий, электрифицированных на постоянном токе, в качестве несущего троса применяют в основном медный провод с площадью сечения 120 мм2, а на боковых путях станций -сталемедный (70 и 95 мм2). За рубежом на линиях переменного тока используют также бронзовые и стальные тросы сечением от 50 до 210 мм2. Натяжение троса в полукомпенсированной контактной подвеске изменяется в зависимости от температуры окружающего воздуха в пределах от 9 до 20 кН, в компенсированной подвеске в зависимости от марки провода – в пределах 10-30 кН.

Струна

Струна – элемент цепной контактной подвески, с помощью которого один из ее проводов (как правило, контактный) подвешивается к другому – несущему тросу.
По конструкции различают: звеньевые струны, составленные из двух и более шар-нирно связанных звеньев жесткой проволоки; гибкие струны из гибкого провода или капронового каната; жесткие – в виде распорок между проводами, применяемые значительно реже; петлевые – из проволоки или металлической полосы, свободно подвешенной на верхнем проводе и жестко или шарнирно закрепленной в струновых зажимах нижнего (обычно контактного); скользящие струны, закрепленные на одном из проводов и скользящие вдоль другого.
На отечественных ж. д. наибольшее распространение получили звеньевые струны из биметаллической сталемедной проволоки диаметром 4 мм. Недостатком их является электрический и механический износ в сочленениях отдельных звеньев. В расчетах эти струны не рассматриваются как токопроводящие. Такого недостатка лишены гибкие струны из медного или бронзового многожильного провода, жестко прикрепленные к струновым зажимам и выполняющие роль электрических соединителей, распределенных вдоль контактной подвески и не образующих существенных сосредоточенных масс на контактном проводе, что характерно для типовых поперечных электрических соединителей, используемых при звеньевых и других непроводящих ток струнах. Иногда применяют непроводящие струны контактной подвески из капронового каната, для крепления которых требуются поперечные электрические соединители.
Скользящие струны, способные перемещаться вдоль одного из проводов, используют в полукомпенсированных цепных контактных подвесках с малой конструктивной высотой, при установке секционных изоляторов, в местах анкеровки несущего троса на искусственных сооружениях с ограниченными вертикальными габаритами и в других особых условиях.
Жесткие струны обычно устанавливают только на воздушных стрелках контактной сети, где они выполняют роль ограничителя подъема контактного провода одной подвески относительно провода другой.

Усиливающий провод

Усиливающий провод – провод, электрически соединенный с контактной подвеской, служащий для снижения общего электрического сопротивления контактной сети. Как правило, усиливающий провод подвешивают на кронштейнах с полевой стороны опоры, реже – над опорами или на консолях вблизи несущего троса. Усиливающий провод применяют на участках постоянного и переменного тока. Снижение индуктивного сопротивления контактной сети переменного тока зависит не только от характеристик самого провода, но и от его размещения относительно проводов контактной подвески.
Применение усиливающего провода предусматривается на стадии проектирования; как правило, используется один или несколько многопроволочных проводов типа А-185.

Электрический соединитель

Электрический соединитель – отрезок провода с токопроводящей арматурой, предназначенный для электрического соединения проводов контактной сети. Различают поперечные, продольные и обводные соединители. Их выполняют из неизолированных проводов так, чтобы они не препятствовали продольным перемещениям проводов контактных подвесок.
Поперечные соединители устанавливают для параллельного соединения всех проводов контактной сети одного и того же пути (включая усиливающие) и на станциях для контактных подвесок нескольких параллельных путей, входящих в одну секцию. Поперечные соединители монтируют вдоль пути на расстояниях, зависящих от рода тока и доли сечения контактных проводов вобщем сечении проводов контактной сети, а также от режимов работы ЭПС на конкретных тяговых плечах. Кроме того, на станциях соединители размещают в местах трогания и разгона ЭПС.
Продольные соединители устанавливают на воздушных стрелках между всеми проводами контактных подвесок, образующих эту стрелку, в местах сопряжений анкерных участков – с двух сторон при неизолирующих сопряжениях и с одной стороны -при изолирующих сопряжениях и в других местах.
Обводные соединители применяют в тех случаях, когда требуется восполнить прерванное или уменьшившееся сечение контактной подвески из-за наличия промежуточных анкеровок усиливающих проводов или при включении в несущий трос изоляторов для прохода через искусственное сооружение.

Арматура контактной сети

Арматура контактной сети – зажимы и детали для соединения проводов контактной подвески между собой, с поддерживающими устройствами и опорами. Арматура (рис. 8.15) делится на натяжную (стыковые, концевые зажимы и др.), подвесную (струновые зажимы, седла и др.), фиксирующую (фиксирующие зажимы, держатели, ушки и др.), токопроводящую, механически мало нагруженную (зажимы питающие, соединительные и переходные – от медных к алюминиевым проводам). Изделия, входящие в состав арматуры, в соответствии с их назначением и технологией производства (литье, холодная и горячая штамповка, прессование и др.) выполняют из ковкого чугуна, стали, медных и алюминиевых сплавов, пластмасс. Технические параметры арматуры регламентируются нормативными документами.

Приложение № 4
к Правилам технической
эксплуатации железных дорог
Российской Федерации

ТЕХНИЧЕСКАЯ ЭКСПЛУАТАЦИЯ СООРУЖЕНИЙ И УСТРОЙСТВ ТЕХНОЛОГИЧЕСКОГО ЭЛЕКТРОСНАБЖЕНИЯ ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА

1. Устройства технологического электроснабжения должны обеспечивать надежное электроснабжение:
электроподвижного состава (включая моторвагонный железнодорожный подвижной состав) для движения поездов с установленными нормами массы, скоростями и интервалами между ними при установленных размерах движения;
устройств сигнализации, централизации и блокировки, связи и вычислительной техники не менее, чем от двух независимых источников электроэнергии, при которых переход с основной системы электроснабжения на резервную или наоборот должен происходить автоматически за время не более 1,3 секунды.
До переустройства систем технологического электроснабжения допускается выполнять переход с основной системы на резервную или обратно за время, установленное, соответственно, владельцем инфраструктуры, владельцем железнодорожных путей необщего пользования.
При наличии аккумуляторного резерва источника технологического электроснабжения автоматической и полуавтоматической блокировки он должен быть в постоянной готовности и обеспечивать бесперебойную работу устройств сигнализации, централизации и блокировки, переездной сигнализации в течение не менее восьми часов при условии, что основное электропитание не отключалось в предыдущие 36 часов.
Для обеспечения надежного технологического электроснабжения должны проводиться периодический контроль состояния сооружений и устройств технологического электроснабжения, измерение их параметров с использованием вагонов-лабораторий, приборов диагностики, а также должны осуществляться плановые ремонтные работы.

2. Уровень напряжения на токоприемнике электроподвижного состава должен быть не менее 21 кВ при переменном токе, 2,7 кВ при постоянном токе и не более 29 кВ при переменном токе и 4 кВ при постоянном токе.
В исключительных случаях, на отдельных участках железнодорожных путей общего пользования по разрешению владельца инфраструктуры допускается уровень напряжения не менее 19 кВ при переменном токе и 2,4 кВ при постоянном токе.
Номинальное напряжение переменного тока на устройствах сигнализации, централизации и блокировки и связи должно быть 110, 220 или 380 В. Отклонения номинального напряжения (в том числе кратковременные) от указанных величин допускаются в сторону уменьшения и увеличения, но не более чем на 10%.

3. Устройства технологического электроснабжения должны защищаться от токов короткого замыкания, перенапряжений, включая атмосферные и коммутационные, и перегрузок сверх установленных норм.
Металлические подземные сооружения, а также металлические и железобетонные мосты, путепроводы, опоры контактной сети, светофоры, гидроколонки и т.п., находящиеся в районе линий, электрифицированных на постоянном токе, должны быть защищены от электрической коррозии.
Тяговые подстанции линий, электрифицированных на постоянном токе, а также электроподвижной состав должны иметь защиту от проникновения в контактную сеть токов, нарушающих нормальное действие устройств сигнализации, централизации и блокировки и связи.
Линии электропередачи напряжением свыше 1000 В, проложенные по опорам контактной сети, должны отключаться при однофазных замыканиях на землю.

4. Высота подвеса контактного провода вне искусственных сооружений должна быть не менее:
на перегонах и железнодорожных станциях — 5750 мм;
на железнодорожных переездах — 6000 мм.
Высота подвеса контактного провода в пределах искусственных сооружений должна быть не менее:
5550 мм — для контактной сети постоянного тока напряжением 3 кВ;
5570 мм — для контактной сети переменного тока напряжением 25 кВ.
Высота подвеса контактного провода должна быть не более 6800 мм.

5. В пределах искусственных сооружений расстояние от токоведущих элементов токоприемника и частей контактной сети, находящихся под напряжением, до заземленных частей сооружений и железнодорожного подвижного состава должно быть не менее 200 мм на линиях, электрифицированных на постоянном токе, и не менее 270 мм — на переменном токе.

6. Расстояние от оси крайнего железнодорожного пути до внутреннего края опор контактной сети на перегонах и железнодорожных станциях должно быть не менее 3100 мм.
Опоры в выемках должны устанавливаться вне пределов кюветов.
В особо сильно снегозаносимых выемках (кроме скальных) и на выходах из них (на длине 100 м) расстояние от оси крайнего железнодорожного пути до внутреннего края опор контактной сети должно быть не менее 5700 мм. Перечень таких мест определяется, соответственно, владельцем инфраструктуры, владельцем железнодорожных путей необщего пользования.
На существующих линиях до их реконструкции, а также в особо трудных условиях на вновь электрифицируемых линиях расстояние от оси железнодорожного пути до внутреннего края опор контактной сети допускается на железнодорожных станциях не менее 2450 мм, а на перегонах — не менее 2750 мм.
Все указанные размеры устанавливаются для прямых участков пути. На кривых участках эти расстояния должны увеличиваться в соответствии с габаритным уширением, установленным для опор контактной сети.
Взаимное расположение опор контактной сети, воздушных линий и светофоров, а также сигнальных знаков должно обеспечивать видимость сигналов и знаков согласно настоящим Правилам.

7. Все металлические сооружения (мосты, путепроводы, опоры), на которых крепятся элементы контактной сети, детали крепления контактной сети на железобетонных опорах, железобетонных и неметаллических искусственных сооружениях, а также отдельно стоящие металлические конструкции, расположенные на расстоянии менее пяти метров от частей контактной сети, находящихся под напряжением, должны быть заземлены или оборудованы устройствами защитного отключения при попадании на сооружения и конструкции высокого напряжения.
Заземлению подлежат также все расположенные в зоне влияния контактной сети и воздушных линий переменного тока металлические сооружения, на которых могут возникать опасные напряжения.
На путепроводах и пешеходных мостах, расположенных над электрифицированными железнодорожными путями, должны быть установлены предохранительные щиты и сплошной настил в местах прохода людей для ограждения частей контактной сети, находящихся под напряжением.

8. Контактная сеть, линии электропередачи автоблокировки и продольного электроснабжения напряжением свыше 1000 В должны разделяться на секции при помощи изолирующих сопряжений анкерных участков (предусматривающих электрическую независимость смежных секций), нейтральных вставок, секционных и врезных изоляторов, разъединителей.
Опоры контактной сети или щиты, установленные на границах воздушных промежутков, должны иметь отличительную окраску. Между этими опорами или щитами запрещается остановка электроподвижного состава с поднятым токоприемником.

9. Схема питания и секционирования контактной сети, линий автоблокировки и продольного технологического электроснабжения определяется, соответственно, владельцем инфраструктуры, владельцем железнодорожных путей необщего пользования. Выкопировки из этой схемы, ежегодно выверяемые, включаются в техническо-распорядительный акт железнодорожной станции.

10. Переключение разъединителей контактной сети электровозных и моторвагонных депо, экипировочных устройств, а также железнодорожных путей, где осматривается крышевое оборудование электроподвижного состава, производится уполномоченными лицами, прошедшими соответствующее обучение. Переключение остальных разъединителей производится только по приказу энергодиспетчера.
Приводы секционных разъединителей с ручным управлением должны быть заперты на замки.
Порядок переключения разъединителей контактной сети, а также выключателей и разъединителей линий автоблокировки и продольного технологического электроснабжения, хранения ключей от запертых приводов разъединителей, обеспечивающий бесперебойность электроснабжения и безопасность производства работ, устанавливается, соответственно, владельцем инфраструктуры, владельцем железнодорожных путей необщего пользования.

11. Расстояние от нижней точки проводов воздушных линий электропередачи напряжением свыше 1000 В до поверхности земли при максимальной стреле провеса должно быть не менее:
на перегонах — 6,0 м, в том числе в труднодоступных местах — 5,0 м;
на пересечениях с автомобильными дорогами, железнодорожных станциях и в населенных пунктах — 7,0 м.
При пересечениях железнодорожных путей общего и необщего пользования расстояние от нижней точки проводов воздушных линий электропередачи напряжением свыше 1000 В до уровня верха головки рельса не электрифицированных железнодорожных путей должно быть не менее 7,5 м. На электрифицированных линиях это расстояние до проводов контактной сети должно устанавливаться в зависимости от уровня напряжения пересекаемых воздушных линий электропередачи.

На электрифицированных железных дорогах постоянного и переменного тока расположение проводов контактной сети по отношению к уровню верха головки рельса (УТР) и оси пути должно удовлетворять требованиям стандартов и Правил технической эксплуатации железных дорог Российской Федерации.
Минимальная высота подвески контактного провода над уровнем верха головки рельса на перегонах и железнодорожных станциях должна быть не ниже 5750 мм.
В исключительных случаях это расстояние в пределах искусственных сооружений, расположенных на путях железнодорожных станций, на которых не предусматривается стоянка подвижного состава, а также на перегонах, с разрешения Минтранса Российской Федерации может быть уменьшено до 5675 мм при электрификации на переменном токе и до 5550 мм при постоянном токе. Высота подвески контактного провода от УТР не должна превышать 6800 мм, на переездах - быть не менее 6000 мм.
При новом строительстве, обновлении и реконструкции высота подвески контактного провода определяется проектом.
Расстояние от нижней точки проводов питающих, усиливающих, отсасывающих, экранирующих, обратного тока, ДПР, ВЛ и других при наибольшей стреле провеса до поверхности земли и сооружений, а также расстояние между проводами линий при их взаимном пересечении или сближении, должны быть не менее приведенных в табл. ниже.
Расстояние от изолированных консолей, фиксаторов, нижних фиксирующих тросов и шлейфов до поверхности пассажирских платформ, по которым не осуществляется проезд транспортных средств, составляет не менее 4,5 м.
Консоли, фиксаторы и анкерные отходы различных секций перегонов и железнодорожных станций на контактной сети не должны сближаться на расстояние менее 0,8 м. Расстояние от токоведущих частей контактной сети, кроме изолированных консолей, до опоры должно составлять не менее 0,8 м.
Габаритом приближения строения называют предельное поперечное (перпендикулярное к оси пути) очертание, внутри которого не должны находиться части сооружений и устройств, т.е. габариты опор контактной сети определяют с учетом выступающих частей их армировки.
На железнодорожном транспорте горизонтальные расстояния измеряют от оси пути, вертикальные - от уровня головки рельса.
Расстояния от оси пути до внутренней грани опор на уровне верха головок рельсов (или до внутренней грани фундаментов опор), называемые габаритами опор, соответствуют требованиями. Габариты определяют с учетом выступающих частей армировки опор. На двухпутных и многопутных участках опоры устанавливают в створе со смещением 1-2 м.
Расстояние от оси крайнего пути до внутреннего края фундаментов или опор контактной сети на перегонах и железнодорожных станциях должно быть не менее 3,1 м, а в снегозаносимых выемках и на выходах из них на длине 100 м - не менее 5,7 м. На участках железных дорог до обновления и реконструкции и в особо трудных условиях, кроме снегозаносимых выемок, допускается уменьшение этого расстояния до 2,45 м на железнодорожных станциях и 2,75 м на перегонах.

Опоры контактной сети устанавливаются вне пределов кюветов. В выемках опоры контактной сети следует ставить за пределами кюветов с полевой стороны.
При новом строительстве, обновлении и реконструкции контактной сети на участках, где предусматривается скорость движения поездов 161-200 км/ч, расстояние от оси крайнего пути до внутреннего края фундаментов или опор должно быть 3,3 м, а при необходимости увеличенный габарит определяется проектом. Отклонение от этих норм допускается только в сторону увеличения, но не более чем на 100 мм.
Система контроля взаимного расположения пути и контактной сети должна осуществляться с применением реперных знаков в соответствии с техническими требованиями Специальной реперной системы контроля состояния железнодорожного пути в профиле и плане. Реперный знак устанавливается на опоре или фундаменте, он выполняется из отрезка круглого металлического стержня с резьбой для закрепления геодезических приборов.
Все указанные расстояния даны для прямых участков пути. На кривых участках габарит установки опор увеличивают в соответствии с габаритным уширением для опор контактной сети. Габарит опор перед кривой на расстоянии менее 10 м такой же, как на кривом участке пути. Железобетонные анкерные опоры контактной сети устанавливают с габаритом, увеличенным на 200 мм относительно принятого габарита промежуточных опор.
При расположении опор на пассажирских платформах расстояние между краем платформы и ближайшей гранью опоры составляет не менее 2 м. В обоснованных случаях, например при наличии на платформе какого-либо строения, это расстояние уменьшают, но не менее чем до 3,1 м от оси пути. Если ширина боковой платформы не превышает 4 м, опоры, как правило, устанавливают за ее пределами.
Опоры вдоль тупикового пути, на которых подвешивают провода контактной подвески других путей, на протяжении 100 м до конца тупика устанавливают с габаритом не менее 4 м от оси тупика.
Расстояние от проезжей части переезда по направлению преимущественного хода поездов до опор и анкеров оттяжек, расположенных около главных путей перегонов и станций, должно быть не менее 25 м. В остальных случаях и для фиксирующих опор - не менее 5 м. Расстояние от конца тупика до установленной за ним анкерной опоры, кроме тупиков отстоя электровозов и электросекций, не менее 20 м. Это расстояние может быть сокращено в исключительных случаях из-за условий рельефа, застройки и других обоснованных случаев.
Опоры, фундаменты и оттяжки опор контактной сети, расположенные в местах погрузки-выгрузки грузов и вблизи проезжей части дорог, должны быть ограждены; от сыпучих грузов - щитами. Защитные ограждения должны быть окрашены.
Опоры перед сигналами располагают с такими габаритами, чтобы не ухудшалась видимость сигналов. При этом расстояние от сигналов до частей контактной сети, находящихся под напряжением, должно составлять не менее 2 м.

При размещении опор контактной сети вблизи проводов линий связи и воздушных линий электропередачи учитываются условия выполнения строительно-монтажных работ.
В местах, где вдоль пути проходят кабели СЦБ, освещения, габариты опор определяют с учетом того, чтобы были выдержаны следующие расстояния от поверхности фундамента до кабеля:

  1. при устройстве монолитных фундаментов на месте - 0,6 м;
  2. при блочных фундаментах и несъемных опорах, а также при вибропогружении свайных фундаментов (с обязательным предварительным вскрытием кабеля) - 5 м.

Если опоры устанавливают в местах, где проходят подземные трубопроводы (водонапорные, канализационные, разрыв которых может вызвать разрушение грунта), на глубине, меньшей глубины заложения фундаментов, расстояние по горизонтали от поверхности фундамента или опоры в любой их части до трубопровода должно быть не менее 1 м, а при вибропогружаемых фундаментах - не менее 2 м при обязательном предварительном вскрытии трубопроводов.
Пересечения контактной сети воздушными линиями электропередачи других ведомств проектируют с учетом требований Правил устройства электроустановок (ПУЭ). Пересечения проводов воздушных линий связи и радиофикации с контактной сетью электрифицированных железных дорог не допускаются.
Габарит подвижного состава - это предельное поперечное, перпендикулярное к оси пути очертание, в котором, не выходя наружу, должен помещаться как груженый, так и порожний подвижной состав, установленный на прямом горизонтальном пути.
Габарит погрузки груза - предельное поперечное очертание груза, погруженного на открытый подвижной состав. Грузы, выходящие за пределы очертаний зон негабаритности или имеющие высоту более 5300 мм, относятся к сверхнегабаритным.

Габариты проводов на электрифицированных линиях


Наименование объектов пересечения или сближения

Наименьшее расстояние от проводов (кабелей), м

ВЛ 0,4 кВ, отсасывающих, обратного тока, экранирующих, волновода, волоконнооптической линии связи, группового заземления

ВЛ 10(6) кВ, питающих и усиливающих линий 3 кВ

ВЛ 35 кВ, ДПР, питающих и усиливающих линий 25 кВ

Поверхность земли:

в населенной местности

в ненаселенной местности

в пределах искусственных сооружении в труднодоступных
местах

в недоступных местах

Головки рельсов неэлектрифици-рованного пути

Поверхность автомобильной
дороги

Несущий трос или верхний про
вод ВЛ, подвешенный на опорах
контактной сети

Провод троллейбусных и трамвайных линии

Провод ВЛ при напряжении:

Настил пешеходных мостов (при
устройстве над мостом предохранительного щита)

Поверхность пассажирских платформ (при двойном креплении проводов)

Крыши производственных зданий

Здания по горизонтали

Линии связи и радио (по горизонтали)

Кроны деревьев

Примечания.

  1. Населенная местность - в городской черте с перспективой развития на 10 лет, курорты, поселки, населенные пункты, железнодорожные станции.
  2. Ненаселенная местность - незастроенная местность, редко стоящие строения, перегоны, включая остановочные пункты.
  3. Труднодоступные места - недоступные для транспорта и машин, откосы насыпей и выемок.
  4. Недоступные места - склоны гор, скал, утесов.
  5. Расстояние от проводов группового заземления до поверхности автомобильной дороги на переездах должно быть 6,0 м, а у анкеровок этих проводов, кроме переездов, до поверхности земли - 4 м.

Проверяют высоту подвески контактного провода от уровня головки рельса под фиксатором и в середине пролета. Регулируют ее изменением длины струн. Конструктивную высоту контактной подвески измеряют в местах крепления несущего троса к поддерживающим конструкциям. Она должна быть 1,8 м (не более 2,4 м и не менее 1,5 м).

Вертикальную регулировку в промежуточных и переходных пролетах выполняют при помощи изменения длины струн (рис. 4.25; 4.26), используя данные табл. 4.9 и 4.10 к рис. 4.26,а; табл. 4.11 к рис. 4.26,б; табл. 4.12 к рис. 4.26,в). Допускаются отклонения от размеров, указанных в табл. 4.9 – 4.12:

– стрелы провеса контактных проводов +– 10 мм;

– длины рессорной струны +– 0,1 м;

– расстояния между струнами +– 0,1 м;

– расстояния Б между несущим тросом и рессорной струной +– 50 мм;

– стрелы провеса несущих тросов +– 50 мм.

Таблица 4.9

Таблица 4.10

Таблица 4.11

Длина пролета L , м Размер b , см Стрела провеса f, см
промежуточных переходных промежуточных переходных
–20…–10 –4 –4 –4 –5 –3 –3 –3 –3
–9…0 –3 –3 –3 –3 –2 –2 –2 –1
+1…+10 –3 –2 –1 –2
+11…+20 –2 –1
+21…+30 –1

Таблица 4.12

Температура при регулировке, 0 о С Длина проле–та L , м Размер b , см Стрела провеса f, см
На перегонах до 160 км/ч в пролетах На перегонах до 90 км/ч и станциях в пролетах
промежу– точных переход– ных промежу– точных Переходных
–20…–10 –4 –5 –6 –7 –1 –1 –3 –4 –5 –5
–9…0 –4 –4 –4 –5 –3 –3 –3 –3
+1…+10 –3 –3 –3 –2 –2 –2
+11…+20 –3 –2 –1 –2
+21…+30 –2 –1

Рис. 4.25 Геометрические параметры контактных подвесок: а – полукомпенсированной; б – компенсированной; 1 – несущий трос; 2 – контактный провод; З – уровень головки рельса (УГР); 4 – ось пути; 5 – уровень беспровесного положения контактного провода; б – фиксатор

(консоль); 7 – опора; 8 – консоль; F – стрела провеса несущего троса; Fmах– максимальная и минимальная стрела провеса; L – длина пролета; l

– длина рессорной струны; h – конструктивная высота; Δh– стрела провеса контактного провода под опорой (поддерживающей конструкцией);

Н – высота подвешивания контактного провода над уровнем верха головки репьса (УГР); в – зигзаг контактного провода; с – расстояние между звеньевыми струнами; f – стрела провеса контактного провода (+f положительная стрела провеса, –f–отрицательная стрела провеса)


Рис. 4.26. Схема стрел провеса контактного провода компенсированной подвески в промежуточном пролете с одним контактным проводом

1 – стрела провеса контактного провода

(определяется по табл. 4.9 при одном контактном проводе (а);

Схема стрел провеса контактного провода полукомпенсированной подвески в промежуточном пролете с одним контактным проводом (б);

Схема стрел провеса контактного провода полукомпенсированной подвески в переходном пролете с одним контактным проводом (в)

4.11. Проверка и регулировка контактной сети в искусственных сооружениях

Проверяют состояние контактной подвески и определяют высоту сечения провода. Измеряют высоту контактного провода подвески от уровня головки рельса. Она должна быть на перегонах и станциях не менее 5750 мм и не более 6800 мм. С разрешения ОАО «РЖД» допускается снижение высоты до 5675 мм на участках переменного тока (рис. 4,27). Проверяют расстояние по вертикали между контактным проводом и искусственным сооружением. Оно должно быть при одном контактном проводе – не менее 650 мм (рис. 4.28 и табл. 4.13). При несоблюдении этих условий должны быть применены изолированные отбойники контактного провода. Расстояние между отбойником и контактным проводом должно быть от 50 до 150 мм в зависимости от числа контактных проводов и установленной скорости движения поездов (рис. 4.29 и табл. 4.14).

Таблица 4.13

Таблица 4.14

Скорость движения поездов, км/ч Допустимые расстояния Б, мм
При одном контактном проводе При двойном контактном проводе
До 50
От 51 до 120
От 121 до 200

Проверяют уклон контактного провода при подходе к искусственному сооружению. Основной уклон контактного провода должен быть в пределах от 0,01 до 0,006 и дополнительный уклон – в пределах от 0,001 до 0,0005 в зависимости от установленных скоростей движения поездов. Например, при уклоне 0,01 на длине 10 м снижение или подъем контактного провода составляет 100 мм (рис. 4.30; табл. 4.15 и 4.16).

Таблица 4.15

Таблица 4.16

Примечание: Уклон – снижение или подъем контактного провода при переходе от одной высоты подвески контактного провода к другой. Уклон не должен превышать значений, приведенных в табл. 4.15 и 4.16.

Проверяют состояние несущего троса , обводного провода, усиливающего фидера, электрических соединителей. Изоляторы очищают от грязи. Расстояние от заземленных конструкций до изолирующей детали изолятора, находящегося со стороны заземленных частей, должно быть не менее 100 мм, а со стороны токонесущих частей – не менее 300 мм на участках переменного тока. Расстояние между токонесущими частями контактной подвески и заземленными частями искусственного сооружения должно быть не менее 350 мм на участках переменного тока.

Проверяют узлы крепления опорных и поддерживающих конструкций, анкеровки несущего троса, нейтральные вставки и узлы подключения заземления. Металлоконструкции окрашивают, резьбовые части покрывают антикоррозионной смазкой. На искусственном сооружении проверяют состояние изоляции, в т. ч. при наличии полимерных разъемных профилей, установленных для усиления изоляции и закрепление предохранительных щитов, наличие плакатов безопасности. Предохранительный щит должен быть расположен так, чтобы от токонесущих частей до края щита по горизонтали было не менее 1 м. Обращают внимание на расстояние по горизонтали от токонесущих частей до схода с искусственного сооружения. При отсутствии предохранительного щита это расстояние должно быть не менее 2 м.

При наличии нейтральной вставки в несущем тросе контактной подвески измеряют сопротивление изоляции между искусственным сооружением и нейтральной вставкой при отключенных искровых промежутках. Оно должно быть не менее 10 кОм. Исправность искровых промежутков проверяют прибором ПК–1 или ПК–2 или вольтметром. Отклонение стрелки прибора происходит при исправном искровом промежутке.

Под мостами проверяют изоляторы и поддерживающие конструкции, чтобы исключить возможность протечки и попадания на них загрязненных стоков воды при дожде. В тоннелях проверяют защитные зонтики из полимерных материалов или другие устройства, предотвращающие перекрытия изоляторов.

Проверяют площадь сечения контактной подвески, она должна соответствовать площади сечения проводов на прилегающих участках. Обвод должен проходить вне зоны прохода токоприемника. Обращают внимание на типы изоляторов. На искусственных сооружениях, подверженных вибрации, не должны применяться стержневые фарфоровые изоляторы. С обеих сторон искусственных сооружений, где пропуск поездов осуществляют с опущенными токоприемниками, должны быть нейтральные вставки с применением секционных изоляторов.

Допустимые расстояния между токонесущими и заземленными частями в искусственных сооружениях приведены в табл. 4.17 и на рис. 4.31.

Таблица 4.17.


Рис. 4.27 Схема прохода контактных подвесок на мостах с ездой понизу:

а – при низкорасположенных верхних ветровых связях моста; б – при более

высоких верхних ветровых связях; 1 – отб ойник контактного провода;

2 – П–образный кронштейн; З – фиксатор; 4– кронштейн

Рис. 4.28 Схема расположения (прохода) проводов контактной подвески в искусственных сооружениях: а – с несущим тросом; б – без несущего троса; 1 – несущий трос; 2 – искусственное сооружение; З – предохранительный щит; 4 – обвод несущего троса; 5 – контактный провод; А – расстояние от несущего троса или от контактного провода до искусственного сооружения

Рис. 4.29 Схема расположения (прохода) проводов контактной подвески в искусственных сооружениях: а, б – при наличии отбойника для контактного провода; в – при наличии отбойника для несущего троса; 1 – несущий трос; 2 – искусственное сооружение; З – предохранительный щит; 4– обвод несущего троса; 5 – отбойник; б – контактный провод; Б – расстояние от отбойника до контактного провода или до несущего троса

Рис. 4.30 Уклон контактного провода: 1 – искусственное сооружение; 2 – контактный провод; Н – высота контактного провода от уровня головки рельса (УГР); h – изменение высоты подвеса контактного провода; L – длина пролета

Рис. 4.31. допустимые зазоры (расстояния) в искусственных сооружениях:

1– искусственное сооружение; 2 – токоприемник ЭПС; 3 – контактный

провод; 4 – несущий трос; 5 – подвижной состав; А1, А2, А3 – зазоры

ГОСТ 32679-2014

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

КОНТАКТНАЯ СЕТЬ ЖЕЛЕЗНОЙ ДОРОГИ

Технические требования и методы контроля

Contact line for railway. Technical requirements and control methods


МКС 29.280
ОКП 31 8533

Дата введения 2015-09-01

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2009 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН Открытым акционерным обществом "Научно-исследовательский институт железнодорожного транспорта" (ОАО "ВНИИЖТ")

2 ВНЕСЕН Межгосударственным техническим комитетом по стандартизации МТК 524 "Железнодорожный транспорт"

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 25 июня 2014 г. N 45-2014)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Минэкономики Республики Армения

Беларусь

Госстандарт Республики Беларусь

Киргизия

Кыргызстандарт

Росстандарт

Таджикистан

Таджикстандарт

Минэкономразвития Украины

Настоящий стандарт может быть применен на добровольной основе для соблюдения требований технических регламентов "О безопасности инфраструктуры железнодорожного транспорта" и "О безопасности высокоскоростного железнодорожного транспорта"

4 Приказом Федерального агентства по техническому регулированию и метрологии от 09 октября 2014 г. N 1285-ст межгосударственный стандарт ГОСТ 32679-2014 введен в действие в качестве национального стандарта Российской Федерации с 1 сентября 2015 г.

5 ВВЕДЕН ВПЕРВЫЕ


Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

1 Область применения

Настоящий стандарт распространяется на железнодорожную контактную сеть (далее - контактная сеть) и устанавливает технические требования и методы контроля к контактной сети постоянного тока напряжением 3 кВ и переменного тока напряжением 25 кВ, предназначенной для передачи электроэнергии к железнодорожному электроподвижному составу, движущемуся со скоростями до 250 км/ч.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 8.207-76 Государственная система обеспечения единства измерений. Прямые измерения с многократными наблюдениями. Методы обработки результатов наблюдений. Основные положения

ГОСТ 427-75 Линейки измерительные металлические. Технические условия

ГОСТ 2584-86 Провода контактные из меди и ее сплавов. Технические условия

ГОСТ 7502-98 Рулетки измерительные металлические. Технические условия

ГОСТ 9238-2013 Габариты железнодорожного подвижного состава и приближения строений

ГОСТ 12393-2013 Арматура контактной сети железной дороги линейная. Общие технические условия

ГОСТ 12670-99 Изоляторы фарфоровые тарельчатые для контактной сети электрифицированных железных дорог. Общие технические условия

ГОСТ 13276-79 Арматура линейная. Общие технические условия

ГОСТ 13837-79 Динамометры общего назначения. Технические условия

ГОСТ 16350-80 Климат СССР. Районирование и статистические параметры климатических факторов для технических целей

ГОСТ 17703-72 Аппараты электрические коммутационные. Основные понятия. Термины и определения

ГОСТ 18311-80 Изделия электротехнические. Термины и определения основных понятий

ГОСТ 23875-88 Качество электрической энергии. Термины и определения

ГОСТ 24291-90 Электрическая часть электростанции и электрической сети. Термины и определения

ГОСТ 27744-88 Изоляторы. Термины и определения

ГОСТ 30284-97* Изоляторы полимерные стержневые для контактных сетей электрифицированных железных дорог. Общие технические условия
________________
* Доступ к международным и зарубежным документам, упомянутым здесь и далее по тексту, можно получить, перейдя по ссылке на сайт http://shop.cntd.ru . - Примечание изготовителя базы данных.

ГОСТ 32623-2014 Компенсаторы контактной подвески железной дороги. Технические условия

ГОСТ 32697-2014 Тросы контактной сети железной дороги несущие. Технические условия

ГОСТ 32895-2014 Электрификация и электроснабжение железных дорог. Термины и определения

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ 17703 , ГОСТ 18311 , ГОСТ 23875 , ГОСТ 24291 , ГОСТ 27744 , ГОСТ 32895 , а также следующие термины с соответствующими определениями:
_______________
В Российской Федерации вместо указанного стандарта действует ГОСТ Р 54130-2010 "Качество электрической энергии. Термины и определения".

3.1 переходной пролет (железнодорожной контактной подвески): Пролет контактной подвески, на смежных опорах которого расположены контактные провода двух смежных анкерных участков.

3.2 расчетная длина переходного пролета: Длина пролета, полученная в результате расчета при проектировании.

4 Технические требования

4.1 Общие положения

4.1.1 Части контактной сети, за исключением контактной подвески и фиксирующих ее элементов, должны быть расположены за пределами габарита приближения строений по ГОСТ 9238 :

С - для линий со скоростью движения до 160 км/ч;

С - " " " " " свыше 160 до 250 км/ч.

4.1.2 Несущая способность конструкций контактной сети должна соответствовать расчетным значениям, приведенным в национальных нормах проектирования.
_______________
СТН ЦЭ 141-99 "Нормы проектирования контактной сети", утвержденные МПС России от 26.04.2001.

4.1.3 Климатический район для определения технических требований и климатического исполнения устройств контактной сети должен быть выбран по ГОСТ 16350 .

4.2 Конструктивные требования

4.2.1 Высота подвеса контактного провода должна быть ограничена габаритом железнодорожного подвижного состава при сложенном и опущенном токоприемнике и габаритом приближения строений.

Высота подвеса контактного провода вне искусственных сооружений должна быть не менее:

- на перегонах и железнодорожных станциях - 5750 мм;

- на железнодорожных переездах - 6000 мм.

Высота подвеса контактного провода в пределах искусственных сооружений должна быть, мм, не менее:

- 5550 - для контактной сети постоянного тока напряжением 3 кВ;

- 5570 - для контактной сети переменного тока напряжением 25 кВ.

Высота подвеса контактного провода должна быть не более 6800 мм.

верхнее очертание габарита приближения строений;

контур, соответствующий положениям токоприемника при его смещениях по высоте и в стороны;

положение контактного провода;

верхнее очертание габарита подвижного состава.

Рисунок 1 - Расстояния между сооружениями, устройствами контактной сети, токоприемниками и подвижным составом

4.2.2 Расстояние А от частей токоприемника и контактной сети, находящихся под напряжением, до заземленных частей сооружений и железнодорожного подвижного состава (см. рисунок 1) должно быть не менее:

- 200 мм - для контактной сети при напряжении 3 кВ;

- 270 мм - " " " " " 25 кВ.

4.2.3 Расстояние от оси любого железнодорожного пути на перегонах до ближайшей точки поверхности опоры контактной сети на прямых участках пути и на кривых с радиусом более 3000 м должно быть не менее:

- 3,1 м - для участков железнодорожных линий со скоростью до 120 км/ч;

- 2,75 м - " " " " " в особо трудных условиях со скоростью до 120 км/ч;

- 3,3 м - для участков железнодорожных линий со скоростью свыше 120 до 250 км/ч;

- 5,7 м - в выемках в климатических районах со снежным покровом более 14 дней в году по ГОСТ 16350 и на выходах из них на длине 100 м для всех железнодорожных линий.

Отклонения при установке опор контактной сети допускаются только в сторону увеличения габарита, но не более чем 150 мм от проектного положения.

В выемках опоры контактной сети следует устанавливать за пределами кюветов с полевой стороны.

На кривых участках железнодорожного пути радиусом до 3000 м указанные расстояния должны быть увеличены на уширение горизонтального расстояния между осями путей в соответствии с ГОСТ 9238 (таблица Ж.5).

4.2.4 Расстояние от оси любого железнодорожного пути на железнодорожных станциях до ближайшей точки поверхности опоры контактной сети должно быть не менее 2,45 м.

4.2.5 Параметры и конструкцию контактной подвески выбирают по нормативному документу.

4.3 Требования к зигзагу контактного провода

4.3.1 Контактные провода на прямом участке железнодорожного пути и участке с радиусом кривой более 3000 м следует располагать зигзагообразно относительно оси пути с чередованием расположения зигзага относительно оси пути у смежных опор. Зигзаг должен составлять (300±100) мм, за исключением ромбовидной контактной подвески, где зигзаг должен быть в пределах 300-400 мм.

На кривых участках железнодорожного пути радиусом до 3000 м зигзаг контактного провода должен быть не более 450 мм, таким образом, чтобы проекция контактного провода на плоскость пути в середине пролета располагалась не далее чем 400 мм от оси пути.

Зигзаг контактных проводов ромбовидной контактной подвески должен быть в пределах 300-400 мм.

4.3.2 Зигзаг контактного провода при двойном контактном проводе относится к наружному от оси токоприемника проводу. Контактные провода при этом в точках фиксации должны быть расположены на расстоянии от 40 до 60 мм друг от друга.

4.3.3 Зигзаги контактного провода должны быть устроены таким образом, чтобы любые три смежные точки фиксации не находились на прямой линии.

4.4 Требования к длине пролета контактной сети

4.4.1 Длина пролета должна быть определена как наименьшая полученная из двух расчетных режимов:

- наибольшей ветровой нагрузки;

- наибольшей гололедной нагрузки при одновременной ветровой нагрузке.

4.4.2 Длину пролета со средней анкеровкой необходимо сокращать при компенсированной подвеске на 5%, при полукомпенсированной - на 10% относительно допустимой длины пролета.

4.4.3 Длины двух смежных пролетов не должны отличаться более чем:

- на 25% - для участков железнодорожных линий со скоростью до 120 км/ч;

- на 15% - " " " " " свыше 120 км/ч до 250 км/ч.

4.5 Требования к фиксаторам

Конструкция фиксатора должна обеспечивать:

- отжатие контактного(ых) провода(ов) не менее 250 мм;

- продольное перемещение контактного(ых) провода(ов) не менее 500 мм в обе стороны от среднего положения фиксатора.

4.6 Требования к анкерным участкам и компенсаторам контактной подвески

4.6.1 Длина анкерного участка должна быть, м, не более:

-1600 - для участков со скоростью движения поездов до 120 км/ч;

-1400 - " " " " " более 120 км/ч.

При длине анкерного участка менее 700 м компенсатор контактной подвески, как правило, должен быть установлен с одной стороны, среднюю анкеровку при этом не применяют.

4.6.2 Отклонение значения натяжения контактного провода и несущего троса от проектного значения по всей длине анкерного участка должно быть не более ±5%.

4.6.3 Компенсаторы контактной сети должны соответствовать требованиям ГОСТ 32623 .

4.7 Требования к сопряжениям анкерных участков контактной сети

4.7.1 Сопряжения анкерных участков контактной сети должны обеспечивать взаимное продольное перемещение образующих эти сопряжения проводов, а также плавный переход полозов токоприемников с контактного провода одного анкерного участка на контактный провод другого.

4.7.2 Сопряжения анкерных участков контактной сети должны быть выполнены по одному из следующих вариантов:

- с одним переходным пролетом;

- с двумя переходными пролетами;

- с тремя переходными пролетами.

4.7.3 Длину переходного пролета контактной сети выбирают в соответствии с 4.4.1.

Длина переходных пролетов контактной сети менее 30 м не допускается.

4.7.4 Сопряжения анкерных участков контактной сети рекомендуется принимать:

- с одним переходным пролетом при длине пролета более 45 м;

- с двумя и тремя переходными пролетами при длине пролета менее 45 м.

4.7.5 На неизолирующих сопряжениях анкерных участков контактной сети расстояние в горизонтальной плоскости между внутренними сторонами контактных проводов, взаимодействующих с токоприемником, в переходных пролетах должно быть не менее 100 мм.

Возвышение отходящего на анкеровку контактного провода над рабочим проводом в месте, где проекция нерабочей ветви контактного провода, идущего на анкеровку, пересекается с внутренней стороной головки рельса, должно быть не менее 300 мм.

4.7.6 На изолирующих сопряжениях анкерных участков контактной сети с нормально включенными продольными разъединителями расстояние в горизонтальной плоскости между внутренними сторонами контактных проводов, взаимодействующих с токоприемником, в переходных пролетах должно быть, мм, не менее:

- 500 - для контактной сети переменного тока напряжением 25 кВ;

- 400 - " " " " " 3 кВ.

На изолирующих сопряжениях анкерных участков контактной сети с нормально отключенными продольными разъединителями это расстояние должно составлять не менее 550 мм независимо от рода тока.

4.7.7 Изолирующие сопряжения анкерных участков контактной сети с нормально отключенными продольными разъединителями, а также образующие нейтральные вставки должны быть оборудованы защитными устройствами от пережогов проводов контактной подвески электрической дугой. На железнодорожных путях с двусторонним движением защитные устройства должны быть установлены в обоих направлениях.

4.8 Требования к воздушным стрелкам контактной сети

4.8.1 Воздушная стрелка контактной сети должна обеспечивать беспрепятственное перемещение проводов контактной подвески при их температурном удлинении.

4.8.2 Конструкция воздушной стрелки контактной сети должна быть выполнена:

- с/без пересечением(ия) контактных проводов, если стрелочный железнодорожный перевод с маркой крестовины до 1/22;

- без пересечения контактных проводов при более пологом железнодорожном стрелочном переводе (марка крестовины не менее 1/22).

4.8.3 Вертикальная проекция точки пересечения контактных проводов на воздушной стрелке контактной сети на уровне головки рельсов обыкновенного стрелочного перевода должна быть расположена в пределах заштрихованной области на указанном расстоянии от осей путей (см. рисунок 2).

Рисунок 2 - Расположение на плоскости пути обыкновенного стрелочного перевода проекции точки пересечения контактных проводов воздушной стрелки

4.8.4 Вертикальная проекция точки пересечения контактных проводов на воздушной стрелке контактной сети на уровне головки рельсов при перекрестном и глухом стрелочном переводах должна быть расположена в пределах заштрихованной области на указанном расстоянии от осей путей (см. рисунок 3).

Рисунок 3 - Расположение на плоскости пути при перекрестном и глухом стрелочном переводах проекции точки пересечения контактных проводов воздушной стрелки

4.8.5 Контактные провода контактной сети главных железнодорожных путей или железнодорожных путей преимущественного направления движения поездов на воздушных стрелках с пересечением должны быть расположены снизу.

4.9 Требования к электрическим соединениям контактной сети

4.9.1 Для электрического соединения проводов контактной сети необходимо применять линейную арматуру контактной сети, соответствующую требованиям ГОСТ 12393 , и линейную арматуру, соответствующую требованиям ГОСТ 13276 .

4.9.2 Поперечные электрические соединители контактной сети устанавливают:

- между проводами контактной сети в местах подключения шлейфов разъединителей;

- с обеих сторон воздушной стрелки контактной сети за пределами зоны подхвата;

- с обеих сторон секционного изолятора контактной сети на расстоянии не более одного пролета;

- между проводами подвесок контактной сети на неизолирующих сопряжениях;

- между контактными подвесками контактной сети станционных железнодорожных путей, объединенных в одну секцию;

- в промежуточных пролетах контактной сети между несущим тросом и контактным проводом, за пределами рессорного троса или опорной струны, где это необходимо по тепловым расчетам;

- между проводами контактной подвески и усиливающими проводами контактной сети в местах их подключения к питающей линии контактной сети.

4.9.3 Электрические соединители контактной сети должны быть выполнены из провода марки М95 или М120 по ГОСТ 32697 .

4.10 Требования к опорам и анкерам контактной сети

В контактной сети следует применять стойки опор, фундаменты опор, анкеры соответствующие требованиям национальных стандартов государств, приведенных в предисловии.
_______________
В Российской Федерации применяют ГОСТ Р 54270-2010 "Стойки для опор контактной сети железных дорог. Технические условия", ГОСТ Р 54272-2010 "Фундаменты для опор контактной сети железных дорог. Технические условия" и ГОСТ Р 54271-2010 "Анкеры для контактной сети железных дорог. Технические условия".

4.11 Требования к изоляторам контактной сети

В контактной сети следует применять изоляторы, соответствующие требованиям ГОСТ 12670 , ГОСТ 30284, а также изоляторы контактной сети и секционные изоляторы, соответствующие требованиям национальных стандартов.
_______________
В Российской Федерации применяют ГОСТ Р 55648-2013 "Изоляторы для контактной сети железных дорог. Общие технические условия" и ГОСТ Р 55649-2013 "Изоляторы секционные для контактной сети железных дорог. Общие технические условия".

4.12 Требования к проводам контактной сети

В контактной сети следует применять провода, соответствующие требованиям ГОСТ 2584 и ГОСТ 32697 .
_______________
В Российской Федерации применяют ГОСТ Р 55647-2013 "Провода контактные из меди и ее сплавов для электрифицированных железных дорог. Технические условия".

5 Методы контроля

5.1 Общие требования

Контроль параметров осуществляют методами, указанными в таблице 1.

Таблица 1 - Методы контроля параметров

Подраздел или пункт требования

Наименование контролируемого параметра

Раздел, метод контроля

Высота подвеса контактного провода

Расстояние от частей токоприемника и контактной сети, находящихся под напряжением, до заземленных частей сооружений и железнодорожного подвижного состава

Расстояние от оси железнодорожного пути на перегонах до ближайшей точки поверхности опоры контактной сети

Зигзаг контактного провода контактной сети

Длина пролета контактной сети

Отжатие контактного провода в точке фиксации

Продольное перемещение контактного провода в точке его фиксации

Длина анкерного участка контактной сети

Отклонение натяжения контактного провода и несущего троса контактной сети

Взаимное продольное перемещение проводов сопряжений анкерных участков контактной сети и плавный переход полозов токоприемников с контактного провода одного на контактный провод другого анкерного участка контактной сети

Органолеп-
тический

Расстояние в горизонтальной плоскости между внутренними сторонами контактных проводов, взаимодействующих с токоприемником, в переходных пролетах анкерных участков контактной сети (на неизолирующих сопряжения)

Расстояние в горизонтальной плоскости между внутренними сторонами контактных проводов, взаимодействующих с токоприемником, в переходных пролетах анкерных участков контактной сети (на изолирующих сопряжения)

Наличие защитных устройств от пережогов проводов контактной сети электрической дугой на изолирующем сопряжении с нормально отключенными продольными разъединителями и нейтральных вставках контактной сети

Визуальный контроль

Беспрепятственное перемещение проводов контактной подвески контактной сети при их температурном удлинении на воздушной стрелке

Визуальный контроль

Конструкция воздушной стрелки контактной сети

Визуальный контроль

Вертикальная проекция точки пересечения контактных проводов воздушной стрелки контактной сети на уровне головки рельсов

Расположение контактных проводов на воздушных стрелках контактной сети с пересечением главных железнодорожных путей или железнодорожных путей преимущественного направления движения поездов

Визуальный контроль

Расположение поперечных электрических соединителей контактной сети

Визуальный контроль

Материал и сечение проводов электрических соединителей контактной сети

Визуальный контроль

5.2 Измерения на соответствие требованиям 4.2.1, 4.3, 4.7.5, 4.7.6 должны быть проведены с помощью мобильного измерительно-вычислительного комплекса для измерения параметров контактной сети или рулеткой и линейкой при температуре окружающего воздуха от минус 50°С до плюс 45°С. Требования к погрешности измерения приведены в таблице 2.

Таблица 2

Проверяемый параметр

Значение измеряемой величины

Класс точности

Абсолютная погрешность

Линейный размер, мм

От 0 до 1000

От 0 до 7000

Температура °С

От минус 20 до плюс 40

Измерения проводят при скорости движения до 70 км/ч один раз в одном направлении. Результаты измерения должны быть записаны на электронный носитель.

Результаты измерений обрабатывают в соответствии с требованиями ГОСТ 8.207 и выбирают наименьшие и наибольшие значения в каждом пролете и сопряжении анкерных участков контактной сети.
_______________
В Российской Федерации действует ГОСТ Р 8.736-2011 "Государственная система обеспечения единства измерений. Измерения прямые многократные. Методы обработки результатов измерений. Основные положения".

5.3 Измерение на соответствие требованиям 4.4, 4.6.1, 4.7.3 должно быть проведено при температуре окружающего воздуха от минус 50°С до плюс 45°С.

Измерения должны быть проведены с помощью измерительной рулетки по ГОСТ 7502 с диапазоном измерений 0-100 м и классом точности 3.

Измерения проводят в каждом пролете анкерного участка контактной сети. Измерение нужно проводить между поверхностями соседних опор одного пролета, расположенных с одной географической стороны опор в горизонтальной плоскости верхнего уровня головки ближайшего рельса.

Длину анкерного участка контактной сети измеряют путем нескольких последовательных измерений между крайними опорами анкерного участка вдоль рельса железнодорожного пути и арифметического сложения результатов измерений.

5.4 Измерение отжатия контактного провода в точке фиксации должно быть проведено при температуре окружающего воздуха от минус 15°С до плюс 30°С.

Измерения проводят с помощью:

- линейки по ГОСТ 427 с диапазоном измерения 0-300 мм и классом точности 1;

- динамометра по ГОСТ 13837 классом точности 2.

Для измерений выбирают случайным способом четыре фиксатора на анкерном участке.

В вертикальной плоскости рядом с фиксатором закрепляют линейку и отмечают на линейке положение фиксатора. Затем к точке фиксации прикладывают вертикальную нагрузку, направленную вверх. Нагрузки измеряют с помощью динамометра. Нагрузку увеличивают до тех пор, пока перемещение контактного провода от отмеченного на линейке места не достигнет 250 мм. При этом нагрузка должна быть не более 650 Н. После снятия нагрузки провод должен вернуться в исходное положение. Измерение отжатия должно быть проведено не менее трех раз.

5.5 Измерение продольного перемещения контактных проводов в точке фиксации должно быть проведено при температуре окружающего воздуха от минус 15°С до плюс 30°С.

Измерения проводят с помощью линейки по ГОСТ 427 с диапазоном измерения 0-1000 мм и классом точности 1.

Для измерения на анкерном участке выбирают случайным образом четыре фиксатора, за исключением фиксаторов, расположенных на переходных опорах.

В горизонтальной плоскости рядом с фиксатором закрепляют линейку и отмечают на линейке положение фиксатора. Отсоединяют фиксатор от контактного провода и устанавливают его в среднее положение. С помощью приложения нагрузки к фиксатору вдоль оси железнодорожного пути перемещают фиксатор в одну и другую стороны, при этом фиксируют его крайние положения на горизонтально закрепленной линейке.

5.6 Измерение расстояния от частей токоприемника и контактной сети, находящихся под напряжением, до заземленных частей сооружений и подвижного состава должно быть проведено при температуре окружающего воздуха от минус 20°С до минус 5°С.

Измерение проводят с помощью лазерного габаритомера с диапазоном измерения не менее чем от 0 до 7300 мм и классом точности 1 и измерительного токоприемника.

С помощью габаритомера проводят сканирование поперечного сечения внутренней поверхности искусственного сооружения с диапазоном сканирования вдоль пути 5 мм.

На полученный поперечный профиль накладывают профиль поперечного сечения измерительного токоприемника и определяют расстояние между поверхностью токоприемника до поверхности заземленных частей искусственного сооружения.

5.7 Измерение расстояния от оси железнодорожного пути на перегонах до ближайшей точки поверхности опоры контактной сети должно быть проведено при температуре окружающего воздуха от минус 15°С до плюс 30°С.

Измерение проводят с помощью рулетки по ГОСТ 7502 с диапазоном измерений 0-10 м и классом точности 2 и контрольного стержня, длина которого составляет (2000±5) мм, и поперечной жесткостью не менее 0,1 Н/мм.

На ближайший железнодорожный путь от опоры контактной сети прикладывают контрольный стержень напротив опор и отмечают ось железнодорожного пути на стержне. Затем измеряют расстояние с помощью измерительной рулетки между осью железнодорожного пути и ближайшей точки поверхности стойки опоры контактной сети.

5.8 Измерение натяжения контактного провода и несущего троса должно быть проведено при температуре окружающего воздуха от минус 15°С до плюс 30°С.

Измерение проводят с помощью динамометра по ГОСТ 7502 с пределом измерений до 30000 Н и классом точности 2.

Для измерения на анкерном участке выбирают четыре пролета. Два пролета должны быть смежными с пролетом, где расположена средняя анкеровка контактной сети, другие два пролета - рядом с переходными пролетами.

С помощью динамометра проводят измерение натяжения контактного провода и несущего троса в середине выбранных пролетов.

5.9 Расстояния от вертикальной проекции точки пересечения контактных проводов на воздушной стрелке контактной сети на уровне головки рельсов до точки пересечения осей железнодорожного пути измеряют с помощью линейки по ГОСТ 427 с диапазоном измерения 0-2000 мм и классом точности 1. К возможным крайним точкам пересечения контактных проводов прикрепляют отвес и измеряют расстояние между осями железнодорожных путей и отвесом на уровне головки рельсов.

5.10 Результаты измерений оформляют в виде таблицы. Форма таблицы приведена на рисунке 4.


Наименование измеряемого параметра

Значение параметра

Соответствие

Рисунок 4 - Форма таблицы результатов измерений

УДК 621.332:006.354 МКС 29.280 ОКП 31 8533

Ключевые слова: контактная сеть, технические требования, методы контроля
__________________________________________________________________________

Электронный текст документа
подготовлен АО "Кодекс" и сверен по:
официальное издание

М.: Стандартинформ, 2015



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ