Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Классическое и статистическое определение вероятности

Для практической деятельности необходимо уметь сравнивать события по степени возможности их наступления. Рассмотрим классический случай. В урне находится 10 шаров, 8 из них белого цвета, 2 черного. Очевидно, что событие «из урны будет извлечен шар белого цвета» и событие «из урны будет извлечен шар черного цвета» обладают разной степенью возможности их наступления. Поэтому для сравнения событий нужна определенная количественная мера.

Количественной мерой возможности наступления события является вероятность . Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое.

Классическое определение вероятности связано с понятием благоприятствующего исхода. Остановимся на этом подробнее.

Пусть исходы некоторого испытания образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Такие исходы называют элементарными исходами , или случаями . При этом говорят, что испытание сводится к схеме случаев или «схеме урн », т.к. любую вероятностную задачу для подобного испытания можно заменить эквивалентной задачей с урнами и шарами разных цветов.

Исход называется благоприятствующим событию А , если появление этого случая влечет за собой появление события А .

Согласно классическому определению вероятность события А равна отношению числа исходов, благоприятствующих этому событию, к общему числу исходов , т.е.

, (1.1)

где Р(А) – вероятность события А ; m – число случаев благоприятствующих событию А ; n – общее число случаев.

Пример 1.1. При бросании игральной кости возможны шесть исходов – выпадение 1, 2, 3, 4, 5, 6 очков. Какова вероятность появления четного числа очков?

Решение. Все n = 6 исходов образуют полную группу событий и равновозможны, т.е. единственно возможны, несовместны и равновозможны. Событию А – «появление четного числа очков» – благоприятствуют 3 исхода (случая) – выпадение 2, 4 или 6 очков. По классической формуле вероятности события получаем

Р(А) = = .

Исходя из классического определения вероятности события, отметим ее свойства:

1. Вероятность любого события заключена между нулем и единицей, т.е.

0 ≤ Р (А ) ≤ 1.

2. Вероятность достоверного события равна единице.

3. Вероятность невозможного события равна нулю.

Как было сказано ранее, классическое определение вероятности применимо только для тех событий, которые могут появиться в результате испытаний, обладающих симметрией возможных исходов, т.е. сводящихся к схеме случаев. Однако существует большой класс событий, вероятности которых не могут быть вычислены с помощью классического определения.

Например, если допустить, что монета сплющена, то очевидно, что события «появление герба» и «появление решки» нельзя считать равновозможными. Поэтому формула для определения вероятности по классической схеме в данном случае неприменима.

Однако существует другой подход при оценке вероятности событий, основанный на том, насколько часто будет появляться данное событие в произведенных испытаниях. В этом случае используется статистическое определениевероятности.

Статистической вероятностью события А называется относительная частота (частость) появления этого события в n произведенных испытаниях, т.е.

, (1.2)

где Р * (А) – статистическая вероятность события А ; w(A) – относительная частота события А ; m – число испытаний, в которых появилось событие А ; n – общее число испытаний.

В отличие от математической вероятности Р(А) , рассматриваемой в классическом определении, статистическая вероятность Р * (А) является характеристикой опытной , экспериментальной . Иначе говоря, статистической вероятностью события А называется число, относительно которого стабилизируется (устанавливается) относительная частота w(А) при неограниченном увеличении числа испытаний, проводимых при одном и том же комплексе условий.

Например, когда про стрелка говорят, что он попадает в цель с вероятностью 0,95, то это означает, что из сотни выстрелов, произведенных им при определенных условиях (одна и та же цель на том же расстоянии, та же винтовка и т.д.), в среднем бывает примерно 95 удачных. Естественно, не в каждой сотне будет 95 удачных выстрелов, иногда их будет меньше, иногда больше, но в среднем при многократном повторении стрельбы в тех же условиях этот процент попаданий будет оставаться неизменным. Цифра 0,95, служащая показателем мастерства стрелка, обычно очень устойчива , т.е. процент попаданий в большинстве стрельб будет для данного стрелка почти один и тот же, лишь в редких случаях отклоняясь сколько-нибудь значительно от своего среднего значения.

Еще одним недостатком классического определения вероятности (1.1 ), ограничивающим его применение, является то, что оно предполагает конечное число возможных исходов испытания. В некоторых случаях этот недостаток можно преодолеть, используя геометрическое определение вероятности, т.е. находя вероятность попадания точки в некоторую область (отрезок, часть плоскости и т.п.).

Пусть плоская фигура g составляет часть плоской фигуры G (рис. 1.1). На фигуру G наудачу бросается точка. Это означает, что все точки области G «равноправны» в отношении попадания на нее брошенной случайной точки. Полагая, что вероятность события А – попадания брошенной точки на фигуру g – пропорциональна площади этой фигуры и не зависит ни от ее расположения относительно G , ни от формы g , найдем

Как было сказано выше, классическое определение вероятности предполагает, что все элементарные исходы равновозможны. О равновозможности исходов опыта заключают в силу соображений симметрии. Задачи, в которых можно исходить из соображений симметрии, на практике встречаются редко. Во многих случаях трудно указать основания, позволяющие считать, что все элементарные исходы равновозможны. В связи в этим появилась необходимость введения еще одного определения вероятности, называемого статистическим. Предварительно введем понятие относительной частоты.

Относительной частотой события , или частотой, называется отношение числа опытов, в которых появилось это событие, к числу всех произведенных опытов. Обозначим частоту события А через W(A), тогда

где n – общее число опытов; m – число опытов, в которых появилось событие А .

При небольшом числе опытов частота события носит в значительной мере случайный характер и может заметно меняться от одной группы опытов к другой. Например, при каких-то десяти бросаниях монеты вполне возможно, что герб появится 2 раза (частота 0,2), при других десяти бросаниях мы вполне можем получить 8 гербов (частота 0,8). Однако при увеличении числа опытов частота события все более теряет свой случайный характер; случайные обстоятельства, свойственные каждому отдельному опыту, в массе взаимно погашаются, и частота проявляет тенденцию стабилизироваться, приближаясь с незначительными колебаниями к некоторой средней постоянной величине. Эту постоянную, являющуюся объективной числовой характеристикой явления, считают вероятностью данного события.

Статистическое определение вероятности: вероятностью события называют число, около которого группируются значения частоты данного события в различных сериях большого числа испытаний.

Свойство устойчивости частот, многократно проверенное экспериментально и подтверждающееся опытом человечества, есть одна из наиболее характерных закономерностей, наблюдаемых в случайных явлениях. Между частотой события и его вероятностью существует глубокая связь, которую можно выразить так: когда мы оцениваем степень возможности какого-либо события, мы связываем эту оценку с большей или меньшей частотой появления аналогичных событий на практике.

Геометрическая вероятность

Классическое определение вероятности предполагает, что число элементарных исходов конечно. На практике встречаются опыты, для которых множество таких исходов бесконечно. Для того чтобы преодолеть этот недостаток классического определения вероятности, состоящий в том, что оно неприменимо к испытаниям с бесконечным числом исходов, вводят геометрические вероятности – вероятности попадания точки в область.

Допустим, что на плоскости задана квадрируемая область G , т.е. область, имеющая площадь S G . В области G содержится область g площади S g . В область G наудачу брошена точка. Будем считать, что брошенная точка может попасть в некоторую часть области G с вероятностью, пропорциональной площади этой части и независящей от ее формы и расположения. Пусть событие А – «попадание брошенной точки в область g », тогда геометрическая вероятность этого события определяется формулой:

В общем случае понятие геометрической вероятности вводится следующим образом. Обозначим меру области g (длину, площадь, объем) через mes g , а меру области G – черезmes G ; пусть также А – событие «попадание брошенной точки в область g , которая содержится в области G ». Вероятность попадания в область g точки, брошенной в область G , определяется формулой

.

Задача . В круг вписан квадрат. В круг наудачу бросается точка. Какова вероятность того, что точка попадёт в квадрат?

Решение. Пусть радиус круга равен R , тогда площадь круга равна . Диагональ квадрата равна , тогда сторона квадрата равна , а площадь квадрата равна . Вероятность искомого события определяется как отношение площади квадрата к площади круга, т.е. .

Контрольные вопросы

1. Что называется испытанием (опытом)?

2. Что называется событием?

3. Какое событие называется а) достоверным? б) случайным? в) невозможным?

4. Какие события называются а) несовместными? б) совместными?

5. Какие события называются противоположными?ываются а) несовместными б) совместнымиывается случайным?

6. Что называется полной группой случайных событий?

7. Если события не могут произойти все вместе в результате испытания, то будут ли они попарно несовместными?

8. Образуют ли события А и полную группу?

9. Какие элементарные исходы благоприятствуют данному событию?

10. Какое определение вероятности называется классическим?

11. В каких пределах заключена вероятность любого события?

12. При каких условиях применяется классическая вероятность?

13. При каких условиях применяется геометрическая вероятность?

14. Какое определение вероятности называется геометрическим?

15. Что называется частотой события?

16. Какое определение вероятности называется статистическим?

Контрольные задания

1. Из букв слова «консерватория» наугад извлекается одна буква. Найти вероятность того, что эта буква гласная. Найти вероятность, что это буква «о».

2. На одинаковых карточках написаны буквы «о», «р», «с», «т». Найти вероятность того, что на разложенных наудачу в ряд карточках появится слово «трос».

3. В бригаде 4 женщины и 3 мужчины. Среди членов бригады разыгрывается 4 билета в театр. Какова вероятность того, что среди обладателей билетов окажется 2 женщины и 2 мужчины?

4. Подбрасывается два игральных кубика. Найти вероятность того, что сумма очков на обоих кубиках больше 6.

5. На пяти одинаковых карточках написаны буквы л, м, о, о, т. Какова вероятность того, что извлекая карточки по одной наугад, получим в порядке их выхода слово «молот»?

6. Из 10 билетов выигрышными являются 2. Чему равна вероятность того, что среди взятых наудачу пяти билетов один выигрышный?

7. Какова вероятность того, что в наудачу выбранном двузначном числе цифры таковы, что их произведение равно нулю.

8. Наудачу выбрано число, не превосходящее 30. Найти вероятность того, что это число является делителем 30.

9. Наудачу выбрано число, не превосходящее 30. Найти вероятность того, что это число кратно 3.

10. Наудачу выбрано число, не превосходящее 50. Найти вероятность того, что это число простое.

В экономике, так же как и в других областях человеческой деятельности или в природе, постоянно приходится иметь дело с событиями, которые невозможно точно предсказать. Так, объем продаж товара зависит от спроса, который может существенно изменяться, и от ряда других факторов, которые учесть практически нереально. Поэтому при организации производства и осуществлении продаж приходится прогнозировать исход такой деятельности на основе либо собственного предыдущего опыта, либо аналогичного опыта других людей, либо интуиции, которая в значительной степени тоже опирается на опытные данные.

Чтобы каким-то образом оценить рассматриваемое событие, необходимо учитывать или специально организовывать условия, в которых фиксируется это событие.

Осуществление определенных условий или действий для выявления рассматриваемого события носит название опыта или эксперимента .

Событие называется случайным , если в результате опыта оно может произойти или не произойти.

Событие называется достоверным , если оно обязательно появляется в результате данного опыта, и невозможным , если оно не может появиться в этом опыте.

Например, выпадение снега в Москве 30 ноября является случайным событием. Ежедневный восход Солнца можно считать достоверным событием. Выпадение снега на экваторе можно рассматривать как невозможное событие.

Одной из главных задач в теории вероятностей является задача определения количественной меры возможности появления события.

Алгебра событий

События называются несовместными, если они вместе не могут наблюдаться в одном и том же опыте. Так, наличие двух и трех автомашин в одном магазине для продажи в одно и то же время — это два несовместных события.

Суммой событий называется событие, состоящее в появлении хотя бы одного из этих событий

В качестве примера суммы событий можно назвать наличие в магазине хотя бы одного из двух товаров.

Произведением событий называется событие, состоящее в одновременном появлении всех этих событий

Событие, состоящее в появлении одновременно в магазине двух товаров является произведением событий: -появление одного товара, — появление другого товара.

События образуют полную группу событий, если хотя бы одно из них обязательно произойдет в опыте.

Пример. В порту имеется два причала для приема судов. Можно рассмотреть три события: — отсутствие судов у причалов, — присутствие одного судна у одного из причалов, — присутствие двух судов у двух причалов. Эти три события образуют полную группу событий.

Противоположными называются два единственно возможных события, образующих полную группу.

Если одно из событий, являющихся противоположными, обозначить через , то противоположное событие обычно обозначают через .

Классическое и статистическое определения вероятности события

Каждый из равновозможных результатов испытаний (опытов) называется элементарным исходом. Их обычно обозначают буквами . Например, бросается игральная кость. Элементарных исходов всего может быть шесть по числу очков на гранях.

Из элементарных исходов можно составить более сложное событие. Так, событие выпадения четного числа очков определяется тремя исходами: 2, 4, 6.

Количественной мерой возможности появления рассматриваемого события является вероятность.

Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое .

Классическое определение вероятности связано с понятием благоприятствующего исхода.

Исход называется благоприятствующим данному событию, если его появление влечет за собой наступление этого события.

В приведенном примере рассматриваемое событие — четное число очков на выпавшей грани, имеет три благоприятствующих исхода. В данном случае известно и общее
количество возможных исходов. Значит, здесь можно использовать классическое определение вероятности события.

Классическое определение равняется отношению числа благоприятствующих исходов к общему числу возможных исходов

где — вероятность события , — число благоприятствующих событию исходов, — общее число возможных исходов.

В рассмотренном примере

Статистическое определение вероятности связано с понятием относительной частоты появления события в опытах.

Относительная частота появления события вычисляется по формуле

где - число появления события в серии из опытов (испытаний).

Статистическое определение . Вероятностью события называется число, относительно которого стабилизируется (устанавливается) относительная частота при неограниченном увеличении числа опытов.

В практических задачах за вероятность события принимается относительная частота при достаточно большом числе испытаний.

Из данных определений вероятности события видно, что всегда выполняется неравенство

Для определения вероятности события на основе формулы (1.1) часто используются формулы комбинаторики, по которым находится число благоприятствующих исходов и общее число возможных исходов.

Чтобы количественно сравнивать между собой события по степени их возможности, очевидно, нужно с каждым событием связать определённое число, которое тем больше, чем более возможно событие. Такое число мы назовём вероятностью события. Таким образом, вероятность события есть численная мера степени объективной возможности этого события.

Первым по времени определением вероятности следует считать классическое, которое возникло из анализа азартных игр и применялось вначале интуитивно.

Классический способ определения вероятности основан на понятии равновозможных и несовместных событий, которые являются исходами данного опыта и образуют полную группу несовместных событий.

Наиболее простым примером равновозможных и несовместных событий, образующих полную группу, является появление того или иного шара из урны, содержащей несколько одинаковых по размеру, весу и другим осязаемым признакам шаров, отличающихся лишь цветом, тщательно перемешанных перед выниманием.

Поэтому об испытании, исходы которого образуют полную группу несовместных и равновозможных событий, говорят, что оно сводится к схеме урн, или схеме случаев , или укладывается в классическую схему.

Равновозможные и несовместные события, составляющие полную группу, будем называть просто случаями или шансами. При этом в каждом опыте наряду со случаями могут происходить и более сложные события.

Пример : При подбрасывании игральной кости наряду со случаями А i - выпадение i- очков на верхней грани можно рассматривать такие события, как В - выпадение чётного числа очков, С - выпадение числа очков, кратных трём …

По отношению к каждому событию, которое может произойти при осуществлении эксперимента, случаи делятся на благоприятствующие , при которых это событие происходит, и неблагоприятствующие, при которых событие не происходит. В предыдущем примере, событию В благоприятствуют случаи А 2 , А 4 , А 6 ; событию С - случаи А 3 , А 6 .

Классической вероятностью появления некоторого события называется отношение числа случаев, благоприятствующих появлению этого события, к общему числу случаев равновозможных, несовместных, составляющих полную группу в данном опыте:

где Р(А) - вероятность появления события А; m - число случаев, благоприятствующих событию А; n - общее число случаев.

Примеры:

1) (смотри пример выше) Р(В) = , Р(С) = .

2) В урне находятся 9 красных и 6 синих шаров. Найти вероятность того, что вынутые наугад один, два шара окажутся красными.

А - вынутый наугад шар красный:

m = 9, n = 9 + 6 = 15, P(A) =

B - вынутые наугад два шара красные:

Из классического определения вероятности вытекают следующие свойства (показать самостоятельно):


1) Вероятность невозможного события равна 0;

2) Вероятность достоверного события равна 1;

3) Вероятность любого события заключена между 0 и 1;

4) Вероятность события, противоположного событию А,

Классическое определение вероятности предполагает, что число исходов испытания конечно. На практике же весьма часто встречаются испытания, число возможных случаев которых бесконечно. Кроме того, слабая сторона классического определения состоит в том, что очень часто невозможно представить результат испытания в виде совокупности элементарных событий. Ещё труднее указать основания, позволяющие считать элементарные исходы испытания равновозможными. Обычно о равновозможности элементарных исходов испытания заключают из соображений симметрии. Однако такие задачи на практике встречаются весьма редко. По этим причинам наряду с классическим определением вероятности пользуются и другими определениями вероятности.

Статистической вероятностью события А называется относительная частота появления этого события в произведённых испытаниях:

где - вероятность появления события А;

Относительная частота появления события А;

Число испытаний, в которых появилось событие А;

Общее число испытаний.

В отличие от классической вероятности статистическая вероятность является характеристикой опытной, экспериментальной.

Пример : Для контроля качества изделий из партии наугад выбрано 100 изделий, среди которых 3 изделия оказались бракованными. Определить вероятность брака.

.

Статистический способ определения вероятности применим лишь к тем событиям, которые обладают следующими свойствами:

Рассматриваемые события должны быть исходами только тех испытаний, которые могут быть воспроизведены неограниченное число раз при одном и том же комплексе условий.

События должны обладать статистической устойчивостью (или устойчи- востью относительных частот). Это означает, что в различных сериях испытаний относительная частота события изменяется незначительно.

Число испытаний, в результате которых появляется событие А, должно быть достаточно велико.

Легко проверить, что свойства вероятности, вытекающие из классического определения, сохраняются и при статистическом определении вероятности.

Вероятностью наступления события A называется число, равное отношению числа случаев, благоприятствующих событию A , к общему числу случаев (исходов, шансов или элементарных событий).

Вероятность (Р )

Где n ‒ общее число случаев, m ‒ число случаев, благоприятствующих событию А .

Вероятность невозможного события:

Вероятность достоверного события:

Вероятность любого случайного события:

0 ≤ P (A ) ≤ 1

Статистическое определение вероятности

Статистической вероятностью события A называется относительная частота появления события в n ‒ произведенных испытаниях.

Опытная (экспериментальная) вероятность:

Следовательно,– есть доля тех фактически произведённых испытаний, в которых событиеA появилось. При ,P (A ) ≈ (A )

Пример 1.

В коробке лежит 7 синих, 8 красных и 5 зеленых шаров.

Решение:

Событие A ‒ шар зеленый;

Пример 2.

В коробке лежат 100 электроламп, из них 5 бракованных.

Решение:

Событие A ‒ на удачу, выбранные 2 электролампы исправны.

Пример 3.

В коробке лежит 10 шаров: 6 белых и 4 черных.

Найти:

Вероятность того, что из пяти взятых наугад шаров будет 4 белых.

Решение:

Найдем число благоприятных исходов: число способов, которыми можно взять 4 белых шара из 6 имеющихся шаров, равно:

Общее число исходов определяется числом сочетаний из 10 по 5:

Искомая вероятность P = 15/252 ≈ 0,06.

Геометрическая вероятность , то есть вероятность попадания точки в некоторую область, отрезок, часть плоскости.

Геометрической вероятностью события A называют отношение меры области, благоприятствующей появлению события A , к мере всей области.

где mes ‒мера (длина, площадь, объём области).

4.Алгебра событий. Операции над случайными событиями.

Определение 1. Суммой двух событий A и B называется событие C , состоящее в осуществлении хотя бы одного из событий A или B .

Возможны два случая:

1. Если A и B несовместны, тогда A +B означает, что произойдет или A , или В .

2. Если A и B совместны, тогда A +B означает, что произойдет или A , или B , или A и B одновременно.

Определение 2. Произведением двух событий A и B называется событие C , состоящее в одновременном осуществлении событий A и B .

Пример 1. Из колоды карт наудачу вынули одну карту.

Событие A ‒ карта дама.

Событие B ‒ карта пиковой масти.

Тогда A + B ‒ вынутая карта или дама, или карта пиковой масти, или пиковая дама.

AB ‒ вынутая карта пиковая дама.

Правило произведения событий.

Если какой ни будь объект A можно выбрать m ‒ способами и после каждого такого выбора другой объект B можно выбрать k ‒ способами, то пары объектов «A и B одновременно» можно выбрать mk ‒ способами.

Пример 2.

В лотерее из 50 билетов 8 выигрышных билетов.

Найти вероятность того, что среди первых 5‒ти наугад выбранных билетов 2 будут выигрышными.

Решение:

50 ‒ 8 = 42 ‒ билета невыигрышных.

Событие A ‒ среди первых 5‒ти билетов 2 выигрышных.

Пример3.

В ящике находится 10 стандартных и 5 нестан­дартных деталей.

Какова вероятность, что среди наугад взя­тых 6 деталей будет 4 стандартных и 2 нестандартных?

Решение:

Общее число исходов равно

Число благо­приятных исходов определяется произведением

где пер­вый сомножитель соответствует числу вариантов изъятия из ящика 4‒х стандартных деталей из 10, а второй ‒ числу вари­антов изъятия из ящика 2‒х нестандартных деталей из пяти. Отсюда следует, что искомая вероятность равна



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ