Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Основные динамические характеристики вращательного движения - момент импульса относительно оси вращения z:

и кинетическая энергия

В общем случае, энергия при вращении с угловой скоростью находится по формуле:

, где - тензор инерции .

В термодинамике

Точно по тем же самым рассуждениям, как и в случае поступательного движения, равнораспределение подразумевает, что при тепловом равновесии средняя вращательная энергия каждой частицы одноатомного газа: (3/2)k B T . Аналогично, теорема о равнораспределении позволяет вычислить среднеквадратичную угловую скорость молекул.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Энергия вращательного движения" в других словарях:

    У этого термина существуют и другие значения, см. Энергия (значения). Энергия, Размерность … Википедия

    ДВИЖЕНИЯ - ДВИЖЕНИЯ. Содержание: Геометрия Д....................452 Кинематика Д...................456 Динамика Д....................461 Двигательные механизмы............465 Методы изучения Д. человека.........471 Патология Д. человека............. 474… … Большая медицинская энциклопедия

    Кинетическая энергия энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения. Более строго, кинетическая энергия есть разность между полной… … Википедия

    Тепловое движение α пептида. Сложное дрожащее движение атомов, составляющих пептид, случайно, и энергия отдельного атома флуктуирует в широких пределах, но с помощью закона равнораспределения вычисляют как среднюю кинетическую энергию каждого… … Википедия

    Тепловое движение α пептида. Сложное дрожащее движение атомов, составляющих пептид, случайно, и энергия отдельного атома флуктуирует в широких пределах, но с помощью закона равнораспределения вычисляют как среднюю кинетическую энергию каждого… … Википедия

    - (франц. marées, нем. Gezeiten, англ. tides) периодические колебания уровня воды вследствие притяжения Луны и Солнца. Общие сведения. П. всего заметнее по берегам океанов. Тотчас после малой воды наибольшего отлива, уровень океана начинает… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Рефрижераторное судно Ivory Tirupati начальная остойчивость отрицательна Остойчивость способность … Википедия

    Рефрижераторное судно Ivory Tirupati начальная остойчивость отрицательна Остойчивость способность плавучего средства противостоять внешним силам, вызывающим его крен или дифферент и возвращаться в состояние равновесия по окончании возмущающего… … Википедия

Начнем с рассмотрения вращения тела вокруг неоодвижной оси которую мы назовем осью z (рис. 41.1). Линейная скорость элементарной массы равна где - расстояние массы от оси . Следовательно для кинетической энергии элементарной массы получается выражение

Кинетическая энергия тела слагается из кинетических энергий его частей:

Сумма в правой части этого соотношения представляет собой момент инерции тела 1 относительно оси вращения. образом, кинетическая энергия тела, вращающегося вокруг неподвижной оси равна

Пусть на массу действуют внутренняя сила и внешняя сила (см. рис. 41.1). Согласно (20.5) эти силы совершат за время работу

Осуществив в смешанных произведениях векторов циклическую перестановку сомножителей (см. (2.34)), получим:

где N - момент внутренней силы относительно точки О, N - аналогичный момент внешней силы.

Просуммировав выражение (41.2) по всем элементарным массам, получим элементарную работу, совершаемую над телом за время dt:

Сумма моментов внутренних сил равна нулю (см. (29.12)). Следовательно, обозначив суммарный момент внешних сил через N придем к выражению

(мы воспользовались формулой (2.21)).

Наконец, приняв во внимание, что есть угол на который поворачивается тело за время получим:

Знак работы зависит от знака т. е. от знака проекции вектора N на направление вектора

Итак, при вращении тела внутренние силы работы не совершают, работа же внешних сил определяется формулой (41.4).

К формуле (41.4) можно прийти, воспользовавшись тем, что работа, совершаемая всеми приложенными к телу силами, идет на приращение его кинетической энергии (см. (19.11)). Взяв дифференциал от обеих частей равенства (41.1), придем к соотношению

Согласно уравнению (38.8) так что, заменив через придем к формуле (41.4).

Таблица 41.1

В табл. 41.1 сопоставлены формулы механики вращательного движений с аналогичными формулами механики поступательного движения (механики точки). Из этого сопоставления легко заключить, что во всех случаях роль массы играет момент инерции, роль силы момент силы, роль импульса - момент импульса и т. д.

Формулу. (41.1) мы получили для случая, когда тело вращается вокруг неподвижной фиксированной в теле оси. Теперь допустим что тело вращается произвольным образом относительно неподвижной точки, совпадающей с его центром масс.

Свяжем жестко с телом декартову систему координат, начало которой поместим в центр масс тела. Скорость i-й элементарный массы равна Следовательно, для кинетической энергии тела, можно написать выражение

где - угол между векторами Заменив а через и учтя, что получим:

Распишем скалярные произведения через проекции векторов на оси связанной с телом координатной системы:

Наконец, объединив слагаемые с одинаковыми произведениями компонент угловой скорости и вынеся эти произведения за знаки сумм, получим: так что формула (41.7) принимает вид (ср. с (41.1)). При вращении произвольного тела вокруг одной из главных осей инерции, скажем оси и формула (41.7) переходит в (41.10.

Таким, образом. кинетическая энергия вращающегося тела равна половине произведения момента инерции на квадрат угловой скорости в трех случаях: 1) для тела вращающегося вокруг неподвижной оси; 2) для тела вращающегося вокруг одной из главных осей инерции; 3) для шарового волчка. В остальных случаях кинетическая энергия определяется белее сложными формулами (41.5) или (41.7).

1. Рассмотрим вращение тела вокруг неподвижной оси Z. Разобьем все тело на множество элементарных масс m i . Линейная скорость элементарной массы m i – v i = w·R i , где R i – расстояние массы m i от оси вращения. Следовательно, кинетическая энергия i -ой элементарной массы будет равна . Полная кинетическая энергия тела: , здесь – момент инерции тела относительно оси вращения.

Таким образом, кинетическая энергия тела, вращающегося относительно неподвижной оси равна:

2. Пусть теперь тело вращается относительно некоторой оси, а сама ось перемещается поступательно, оставаясь параллельной самой себе.

НАПРИМЕР: Катящийся без скольжения шар совершает вращательное движение, а центр тяжести его, через который проходит ось вращения (точка «О») перемещается поступательно (рис.4.17).

Скорость i -той элементарной массы тела равна , где – скорость некоторой точки «О» тела; – радиус-вектор, определяющий положение элементарной массы по отношению к точке «О».

Кинетическая энергия элементарной массы равна:

ЗАМЕЧАНИЕ: векторное произведение совпадает по направлению с вектором и имеет модуль, равный (рис.4.18).

Учтя это замечание, можно записать, что , где – расстояние массы от оси вращения. Во втором слагаемом сделаем циклическую перестановку сомножителей, после этого получим

Чтобы получить полную кинетическую энергию тела, просуммируем это выражение по всем элементарным массам, вынося постоянные множители за знак суммы. Получим

Сумма элементарных масс есть масса тела «m». Выражение равно произведению массы тела на радиус-вектор центра инерции тела (по определению центра инерции). Наконец, – момент инерции тела относительно оси, проходящей через точку «О». Поэтому можно записать

.

Если в качестве точки «O» взять центр инерции тела «С», радиус-вектор будет равен нулю и второе слагаемое исчезнет. Тогда, обозначив через – скорость центра инерции, а через – момент инерции тела относительно оси, проходящей через точку «С», получим:

(4.6)

Таким образом, кинетическая энергия тела при плоском движении слагается из энергии поступательного движения со скоростью, равной скорости центра инерции, и энергии вращения вокруг оси, проходящей через центр инерции тела.

Работа внешних сил при вращательном движении твердого тела.

Найдем работу, которую совершают силы при вращении тела вокруг неподвижной оси Z.

Пусть на массу действуют внутренняя сила и внешняя сила (результирующая сила лежит в плоскости, перпендикулярной оси вращения) (рис. 4.19). Эти силы совершают за время dt работу:

Осуществив в смешанных произведениях векторов циклическую перестановку сомножителей, находим:

где , – соответственно, моменты внутренней и внешней сил относительно точки «О».

Просуммировав по всем элементарным массам, получим элементарную работу, совершаемую над телом за время dt :

Сумма моментов внутренних сил равна нулю. Тогда, обозначив суммарный момент внешних сил через , придем к выражению:

.

Известно, что скалярным произведением двух векторов называется скаляр, равный произведению модуля одного из перемножаемых векторов на проекцию второго на направление первого, учтя, что , (направления оси Z и совпадают), получим

,

но w·dt =d j, т.е. угол, на который поворачивается тело за время dt . Поэтому

.

Знак работы зависит от знака M z , т.е. от знака проекции вектора на направление вектора .

Итак, при вращении тела внутренние силы работы не совершают, а работа внешних сил определяется формулой .

Работа за конечный промежуток времени находится путем интегрирования

.

Если проекция результирующего момента внешних сил на направление остается постоянной, то ее можно вынести за знак интеграла:

, т.е. .

Т.е. работа внешней силы при вращательном движении тела равна произведению проекции момента внешней силы на направление и угол поворота.

С другой стороны работа внешней силы, действующей на тело идет на приращение кинетической энергии тела (или равна изменению кинетической энергии вращающегося тела). Покажем это:

;

Следовательно,

. (4.7)

Самостоятельно:

Упругие силы;

Закон Гука.

ЛЕКЦИЯ 7

Гидродинамика

Линии и трубки тока.

Гидродинамика изучает движение жидкостей, однако ее законы примени- мы и к движению газов. При стационарном течении жидкости скорость ее частиц в каждой точке пространства есть величина, независимая от времени и являющаяся функцией координат. При стационарном течении траектории частиц жидкости образуют линию тока. Совокупность линий тока образует трубку тока (рис. 5.1). Будем считать жидкость несжимаемой, тогда объем жидкости, протекающей через сечения S 1 и S 2 , будет одинаков. За секунду через эти сечения пройдет объем жидкости, равный

, (5.1)

где и - скорости жидкости в сечениях S 1 и S 2 , а вектора и определяются как и , где и - нормали к сечениям S 1 и S 2 . Уравнение (5.1) называют уравнением неразрывности струи. Из него следует, что скорость жидкости обратно пропорциональна сечению трубки тока.

Уравнение Бернулли.

Будем рассматривать идеальную несжимаемую жидкость, в которой внутреннее трение (вязкость) отсутствует. Выделим в стационарно текущей жидкости тонкую трубку тока (рис. 5.2) с сечениями S 1 и S 2 , перпендикулярными к линиям тока. В сечении 1 за малое время t частицы сместятся на расстояние l 1 , а в сечении 2 - на расстояние l 2 . Через оба сечения за время t пройдут одинаковые малые объемы жидкости V = V 1 = V 2 и перенесут массу жидкости m=rV , где r - плотность жидкости. В целом изменение механической энергии всей жидкости в трубке тока между сечениями S 1 и S 2 , произошедшее за время t , можно заменить изменением энергии объема V , произошедшим при его перемещении от сечения 1 до сечения 2 . При таком движении изменится кинетическая и потенциальная энергия этого объема, и полное изменение его энергии

, (5.2)

где v 1 и v 2 - скорости частичек жидкости в сечениях S 1 и S 2 соответственно; g - ускорение земного притяжения; h 1 и h 2 - высоты центра сечений.

В идеальной жидкости потери на трение отсутствуют, поэтому приращение энергии DE должно быть равно работе, совершаемой силами давления над выделенным объемом. При отсутствии сил трения эта работа:

Приравнивая правые части равенств (5.2) и (5.3) и перенося члены с одинаковыми индексами в одну часть равенства, получим

. (5.4)

Сечения трубки S 1 и S 2 были взяты произвольно, поэтому можно утверждать, что в любом сечении трубки тока справедливо выражение

. (5.5)

Уравнение (5.5) называется уравнением Бернулли. Для горизонтальной линии тока h = const , и равенство (5.4) приобретает вид

r /2 + p 1 = r· /2 + p 2 , (5.6)

т.е. давление оказывается меньшим в тех точках, где скорость больше.

Силы внутреннего трения.

Реальной жидкости присуща вязкость, которая проявляется в том, что любое движение жидкости и газа самопроизвольно прекращается при отсутствии причин, вызвавших его. Рассмотрим опыт, в котором слой жидкости расположен над неподвижной поверхностью, а сверху его перемещается со скоростью , плавающая на ней пластина с поверхностью S (рис. 5.3). Опыт показывает, что для перемещения пластины с постоянной скоростью необходимо действовать на нее с силой . Так как пластина не получает ускорения, значит, действие этой силы уравновешивается другой, равной ей по величине и противоположно направленной силой, которая является силой трения . Ньютон показал, что сила трения

, (5.7)

где d - толщина слоя жидкости, h - коэффициент вязкости или коэффициент трения жидкости, знак минус учитывает различное направление векторов F тр и v o . Если исследовать скорость частиц жидкости в разных местах слоя, то оказывается, что она изменяется по линейному закону (рис. 5.3):

v(z) = = (v 0 /d)·z.

Дифференцируя это равенство, получим dv/dz = v 0 /d . С учетом этого

формула (5.7) примет вид

F тр =- h(dv/dz)S , (5.8)

где h - коэффициент динамической вязкости . Величина dv/dz называется градиентом скорости. Она показывает, как быстро изменяется скорость в направлении оси z . При dv/dz = const градиент скорости численно равен изменению скорости v при изменении z на единицу. Положим численно в формуле (5.8) dv/dz = -1 и S = 1, получим h = F . Отсюда следует физический смысл h : коэффициент вязкости численно равен силе, которая действует на слой жидкости единичной площади при градиенте скорости, равном единице. Единица вязкости в СИ называется паскаль-секундой (обозначается Па с). В системе СГС единицей вязкости является 1 пуаз (П), причем 1 Па с = 10П.

Выражение для кинетической энергии вращающегося тела с учетом, что линейная скорость произвольной материальной точки, составляющей тело, относительно оси вращения равна имеет вид

где момент инерции тела относительно выбранной оси вращения, его угловая скорость относительно этой оси, момент импульса тела относительно оси вращения.

Если тело совершает поступательно вращательное движение, то вычисление кинетической энергии зависит от выбора полюса, относительно которого описывается движение тела. Конечный результат будет один и тот же. Так, если для катящегося со скоростью vбез проскальзывания круглого тела с радиусом R и коэффициентом инерции k полюс взять в его ЦМ, в точке C, то его момент инерции , а угловая скорость вращения вокруг оси С . Тогда кинетическая энергия тела .

Если полюс взять в точке О касания тела и поверхности, через которую проходит мгновенная ось вращения тела, то его момент инерции относительно оси О станет равным . Тогда кинетическая энергия тела с учетом, что относительно параллельных осей угловые скорости вращения тела одинаковы и вокруг оси О тело совершает чистое вращение, будет равна . Результат тот же.

Теорема о кинетической энергии тела, совершающего сложное движение, будет иметь такой же вид, что и для его поступательного движения: .

Пример 1. К концу нити, накрученной на цилиндрический блок радиуса R и массой M, привязано тело массой m. Тело поднимают на высоту h и отпускают (рис.65). После неупругого рывка нити тело и блок сразу же начинают двигаться совместно. Какое тепло выделится при рывке? Чему будут равны ускорение движения тела и натяжение нити после рывка? Какими будут скорость тела и пройденный им путь после рывка нити через время t?

Дано : M, R, m, h, g, t. Найти : Q -?,a - ?, T - ?,v -?, s - ?

Решение : Скорость тела перед рывком нити . После рывка нити блок и тело придут во вращательное движение относительно оси блока О и будут вести себя как тела с моментами инерции относительно этой оси, равными и . Их общий момент инерции относительно оси вращения .

Рывок нити – быстрый процесс и при рывке имеет место закон сохранения момента импульса системы блок-тело, который ввиду того, что тело и блок сразу же после рывка начинают двигаться совместно, имеет вид: . Откуда начальная угловая скорость вращения блока , а начальная линейная скорость тела .

Кинетическая энергия системы ввиду сохранения ее момента импульса сразу после рывка нити равна . Выделившееся при рывке тепло согласно закону сохранения энергии



Динамические уравнения движения тел системы после рывка нити не зависят от их начальной скорости. Для блока оно имеет вид или , а для тела . Складывая эти два уравнения, получим . Откуда ускорение движения тела . Сила натяжения нити

Кинематические уравнения движения тела после рывка будут иметь вид , где все параметры известны.

Ответ: . .

Пример 2 . Двум круглым телам с коэффициентами инерции (полый цилиндр) и (шар), находящимся в основании наклонной плоскости с углом наклона α сообщают одинаковые начальные скорости, направленные вверх вдоль наклонной плоскости. На какую высоту и за какое время поднимутся тела на эту высоту? Каковы ускорения подъема тел? Во сколько раз отличаются высоты, времена и ускорения подъема тел? Тела движутся вдоль наклонной плоскости без проскальзывания.

Дано : . Найти :

Решение : На тело действуют: сила тяжести mg , реакция наклонной плоскости N , и сила трения сцепления (рис.67). Работы нормальной реакции и силы трения сцепления (нет проскальзывания и в точке сцепления тела и плоскости тепло не выделяется.) равны нулю: , поэтому для описания движения тел возможно применение закона сохранения энергии: . Откуда .

Времена и ускорения движения тел найдем из кинематических уравнений . Откуда , . Отношение высот, времен и ускорений подъема тел:

Ответ : , , , .

Пример 3 . Пуля массой , летящая со скоростью , ударяет в центр шара массой M и радиусом R, прикрепленному к концу стержня массой mи длиной l, подвешенному в точке О за его второй конец, и вылетает из него со скоростью (рис.68). Найти угловую скорость вращения системы стержень-шар сразу же после удара и угол отклонения стержня после удара пули.

Дано : . Найти :

Решение: Моменты инерции стержня и шара относительно точки О подвеса стержня по теореме Штейнера: и . Полный момент инерции системы стержень-шар . Удар пули – быстрый процесс, и имеет место закон сохранения момента импульса системы пуля-стержень-шар (тела после столкновения приходят во вращательное движение): . Откуда угловая скорость движения системы стержень-шар сразу же после удара .



Положение ЦМ системы стержень-шар относительно точки подвеса О: . Закон сохранения энергии для ЦМ системы после удара с учетом закона сохранения момента импульса системы при ударе имеет вид . Откуда высота поднятия ЦМ системы после удара . Угол отклонения стержня после удара определяется условием .

Ответ: , , .

Пример 4 . К круглому телу массой m и радиусом R, с коэффициентом инерции k, вращающемуся с угловой скоростью , прижата с силой N колодка (рис.69). Через какое время остановится цилиндр и какое тепло выделится при трении колодки о цилиндр за это время? Коэффициент трения между колодкой и цилиндром равен .

Дано : Найти :

Решение : Работа силы трения до остановки тела по теореме о кинетической энергии равна . Выделившееся при вращении тепло .

Уравнение вращательного движения тела имеет вид . Откуда угловое ускорение его замедленного вращения . Время вращения тела до его остановки .

Ответ : , .

Пример 5 . Круглое тело массой m и радиусом R с коэффициентом инерции k раскручивают до угловой скорости против часовой стрелки и ставят на горизонтальную поверхность, стыкующуюся с вертикальной стенкой (рис.70). Через какое время тело остановится и сколько оно сделает оборотов до остановки? Чему будет равно тепло, выделившееся при трении тела о поверхности за это время? Коэффициент трения тела о поверхности равен .

Дано : . Найти :

Решение : Тепло, выделившееся при вращении тела до его остановки, равно работе сил трения, которая может быть найдена по теореме о кинетической энергии тела. Имеем .

Реакция горизонтальной плоскости . Силы трения, действующие на тело со стороны горизонтальной и вертикальной поверхностей равны: и .Из системы этих двух уравнений получим и .

С учетом этих соотношений уравнение вращательного движения тела имеет вид ( . Откуда угловое ускорение вращения тела равно . Тогда время вращения тела до его остановки , а число сделанных им при этом оборотов .

Ответ : , , , .

Пример 6 . Круглое тело с коэффициентом инерции k скатывается без проскальзывания с вершины полусферы радиусом R, стоящей на горизонтальной поверхности (рис.71). На какой высоте и с какой скоростью оно оторвется от полусферы и с какой скоростью упадет на горизонтальную поверхность?

Дано : k, g, R. Найти :

Решение : На тело действуют силы . Работы и 0, (нет проскальзывания и тепло в точке сцепления полусферы и шара не выделяется) поэтому для описания движения тела возможно применение закона сохранения энергии. Второй закон Ньютона для ЦМ тела в точке его отрыва от полусферы с учетом, что в этой точке имеет вид , откуда . Закон сохранения энергии для начальной точки и точки отрыва тела имеет вид . Откуда высота и скорость отрыва тела от полусферы равны , .

После отрыва тела от полусферы изменяется только его поступательная кинетическая энергия, поэтому закон сохранения энергии для точек отрыва и падения тела на землю имеет вид . Откуда с учетом получим . Для тела, скользящего по поверхности полусферы без трения, k=0 и , , .

Ответ: , , .

Кинетическая энергия вращения

Лекция 3. Динамика твердого тела

План лекции

3.1. Момент силы.

3.2. Основные уравнения вращательного движения. Момент инерции.

3.3. Кинетическая энергия вращения.

3.4. Момент импульса. Закон сохранения момента импульса.

3.5. Аналогия между поступательным и вращательным движением.

Момент силы

Рассмотрим движение твердого тела вокруг неподвижной оси. Пусть твердое тело имеет неподвижную ось вращения ОО (рис.3.1 ) и к нему приложена произвольная сила .

Рис. 3.1

Разложим силу на две составляющие силы , сила лежит в плоскости вращения, а сила – параллельна оси вращения. Затем силу разложим на две составляющие: – действующую вдоль радиус-вектора и – перпендикулярную ему.

Не любая сила, приложенная к телу, будет вращать его. Силы и создают давление на подшипники, но не вращают его.

Сила может вывести тело из равновесия, а может – нет в зависимости от того, в каком месте радиус-вектора она приложена. Поэтому вводится понятие момента силы относительно оси. Моментом силы относительно оси вращения называется векторное произведение радиуса-вектора на силу .

Вектор направлен по оси вращения и определяется правилом векторного произведения или правилом правого винта, или правилом буравчика.

Модуль момента силы

где α – угол между векторами и .

Из рис.3.1. видно, что .

r 0 – кратчайшее расстояние от оси вращения до линии действия силы и называется плечом силы. Тогда момент силы можно записать

М = F r 0 . (3.3)

Из рис. 3.1.

где F – проекция вектора на направление, перпендикулярное вектору радиус-вектору . В этом случае момент силы равен

. (3.4)

Если на тело действует несколько сил, то результирующий момент силы равен векторной сумме моментов отдельных сил, но так как все моменты направлены вдоль оси, то их можно заменить алгебраической суммой. Момент будет считаться положительным, если он вращает тело по часовой стрелке и отрицательным, если против часовой стрелки. При равенстве нулю всех моментов сил (), тело будет находиться в равновесии.

Понятие момента силы можно продемонстрировать с помощью «капризной катушки». Катушку с нитками тянут за свободный конец нитки (рис. 3.2 ).

Рис. 3.2

В зависимости от направления силы натяжения нити катушка перекатывается в ту или иную сторону. Если тянуть под углом α , то момент силы относительно оси О (перпендикулярной к рисунку) вращает катушку против часовой стрелки и она откатывается назад. В случае натяжения под углом β вращающий момент направлен против часовой стрелки и катушка катится вперед.

Используя условие равновесия (), можно сконструировать простые механизмы, которые являются «преобразователями» силы, т.е. прикладывая меньшую силу можно поднимать и перемещать разного веса грузы. На этом принципе основаны рычаги, тачки, блоки разного рода, которые широко используются в строительстве. Для соблюдения условия равновесия в строительных подъемных кранах для компенсации момента силы, вызванного весом груза, всегда имеется система противовесов, создающая момент силы обратного знака.

3.2. Основное уравнение вращательного
движения. Момент инерции

Рассмотрим абсолютно твердое тело, вращающееся вокруг неподвижной оси ОО (рис.3.3 ). Разобьём мысленно это тело на элементы массами Δm 1 , Δm 2 , …, Δm n . При вращении эти элементы опишут окружности радиусами r 1 , r 2 , …, r n . На каждый элемент действуют соответственно силы F 1 , F 2 , …, F n . Вращение тела вокруг оси ОО происходит под действием полного момента сил М .

М = М 1 + М 2 + … +М n (3.4)

где М 1 = F 1 r 1, М 2 = F 2 r 2, …, M n = F n r n

Согласно II закону Ньютона, каждая сила F , действующая на элемент массой Dm , вызывает ускорение данного элемента a , т.е.

F i = Dm i a i (3.5)

Подставив в (3.4) соответствующие значения, получим

Рис. 3.3

Зная связь между линейным угловым ускорением ε () и что угловое ускорение для всех элементов одинаково, формула (3.6) будет иметь вид

М = (3.7)

=I (3.8)

I – момент инерции тела относительно неподвижной оси.

Тогда мы получим

М = I ε (3.9)

Или в векторном виде

(3.10)

Это уравнение является основным уравнением динамики вращательного движения. По форме оно сходно с уравнением II закона Ньютона. Из (3.10) момент инерции равен

Таким образом, моментом инерции данного тела называется отношение момента силы к вызываемому им угловому ускорении. Из (3.11) видно, что момент инерции является мерой инертности тела по отношению к вращательному движению. Момент инерции играет ту же роль, что и масса при поступательном движении. Единица измерения в СИ [I ] = кг·м 2 . Из формулы (3.7) следует, что момент инерции характеризует распределение масс частиц тела относительно оси вращения.

Итак, момент инерции элемента массы ∆m движущегося по окружности радиусом r равен

I = r 2 Dm (3.12)

I= (3.13)

В случае непрерывного распределения масс сумму можно заменить интегралом

I= ∫ r 2 dm (3.14)

где интегрирование производится по всей массе тела.

Отсюда видно, что момент инерции тела зависит от массы и её распределения относительно оси вращения. Это можно продемонстрировать на опыте (рис.3.4 ).

Рис. 3.4

Два круглых цилиндра, один полый (например, металлический), другой сплошной (деревянный) с одинаковыми длинами, радиусами и массами начинают одновременно скатываться. Полый цилиндр, обладающий большим моментом инерции, отстанет от сплошного.

Вычислить момент инерции можно, если известна масса m и ее распределение относительно оси вращения. Наиболее простой случай – кольцо, когда все элементы массы расположены одинаково от оси вращения (рис. 3.5 ):

I = (3.15)

Рис. 3.5

Приведем выражения для моментов инерции разных симметричных тел массой m .

1. Момент инерции кольца , полого тонкостенного цилиндра относительно оси вращения совпадающей с осью симметрии.

, (3.16)

r – радиус кольца или цилиндра

2. Для сплошного цилиндра и диска момент инерции относительно оси симметрии

(3.17)

3. Момент инерции шара относительно оси, проходящей через центр

(3.18)

r – радиус шара



4. Момент инерции тонкого стержня длинной l относительно оси, перпендикулярной стержню и проходящей через его середину

(3.19)

l – длина стержня.

Если ось вращения не проходит через центр масс, то момент инерции тела относительно этой оси определяется теоремой Штейнера.

(3.20)

Согласно этой теореме, момент инерции относительно произвольной оси О’O’ ( ) равен моменту инерции относительно параллельной оси, проходящей через центр масс тела ( ) плюс произведение массы тела на квадрат расстояния а между осями (рис. 3.6 ).

Рис. 3.6

Кинетическая энергия вращения

Рассмотрим вращение абсолютно твердого тела вокруг неподвижной оси ОО с угловой скоростью ω (рис. 3.7 ). Разобьем твердое тело на n элементарных масс ∆m i . Каждый элемент массы вращается по окружности радиуса r i с линейной скоростью (). Кинетическая энергия складывается из кинетических энергий отдельных элементов.

(3.21)

Рис. 3.7

Вспомним по (3.13), что – момент инерции относительно оси ОО.

Таким образом, кинетическая энергия вращающегося тела

Е к = (3.22)

Мы рассмотрели кинетическую энергию вращения вокруг неподвижной оси. Если тело участвует в двух движениях: в поступательном и вращательном движениях, то кинетическая энергия тела складывается из кинетической энергии поступательного движения и кинетической энергии вращения.

Например, шар массой m катится; центр масс шара движется поступательно со скоростью u (рис. 3.8 ).

Рис. 3.8

Полная кинетическая энергия шара будет равна

(3.23)

3.4. Момент импульса. Закон сохранения
момента импульса

Физическая величина равная произведению момента инерции I на угловую скорость ω , называется моментом импульса (моментом количества движения) L относительно оси вращения.

– момент импульса величина векторная и по направлению совпадает с направлением угловой скорости .

Продифференцировав уравнение (3.24) по времени, получим

где, М – суммарный момент внешних сил. В изолированной системе момент внешних сил отсутствует (М =0) и



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ