Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Многозначные логики - это системы правил и методов исследования логических выражений, которые содержат переменные, принимающие более двух (истина и ложь) значений. Различают логики конечнозначные и бесконечнозначную. К числу первых относятся трехзначная и четырехзначная логики. Бесконечнозначная логика - это логика, в которой для интерпретации высказываний используется бесконечное множество истинностных значений.

Так, трехзначная логика Я. Лукасевича основана на предположении, что высказывания бывают истинными, ложными и возможными или неопределенными. Американский логик Э. Пост подходил к созданию многозначных логик чисто формально. "Пусть 1 означает истину, 0 - ложь. Естественно допустить, что числа между единицей и нулем обозначают какие-то уменьшающиеся к нулю

степени истины" .

Такой подход вполне правомерен на первом этапе. Но для практического использования логики необходимо придать ее символам определенный логический смысл, содержательно ясную интерпретацию. Самая сложная проблема при использовании многозначных логик - интерпретация промежуточных степеней истины. Кроме того. С введением последних возникает необходимость в переистолковании самих понятий истины и лжи .

Один из способов решения этой проблемы - представить истинностное значение вероятностями. Так появились вероятностные логики, оперирующие высказываниями, которые принимают помимо значений истины и лжи промежуточные значения, представляющие собой вероятности истинности высказываний, степени их правдоподобия, степень подтверждения. Они применяются тогда, когда нужно принимать решения при неполной информации или информации, достоверность которой не является стопроцентной. Строящийся при этом логический аппарат используется для выработки приближенных оценок вероятности (правдоподобия, степени подтверждения) гипотез. Вероятностные логики являются одновременно и логиками принятия наиболее подтвержденных гипотез, обоснования статистики . Одной из таких логик является вероятностная логика В.В. Налимова. Она привлекла наше внимание тем, что была разработана для анализа смысловых структур.

Ее теоретической основой является вероятностно ориентированная теория сознания В.В. Налимова - своеобразная, вероятностная интерпретация герменевтических идей .

Излагая основные положения своей теории аксиоматическим образом, В.В. Налимов пишет: «1) Будем считать, что весь воспринимаемый нами эволюционирующий мир можно рассматривать как множество текстов...; 2) Тексты характеризуются дискретной (семиотической) и континуальной (семантической) составляющими; 3) Семантика определяется вероятностно задаваемой структурой смыслов. Смыслы -- это есть то, что делает знаковую систему текстом; 4) Изначально все возможные смыслы мира как-то соотнесены с линейным континуумом Кантора -- числовой осью jli, на которой в порядке возрастания их величин расположены все вещественные числа. Иными словами, смыслы Мира спрессованы так, как спрессованы числа на действительной оси; 5) Спрессованность смыслов -- это нераспакованный (непроявленный) Мир: «семантический вакуум»; 6) Распаковывание (появление текстов) осуществляется не механическим считыванием, а творчески, обращаясь к неформальной, вероятностной логике - «вероятностным взвешиванием оси jli: разным ее участкам приписывается разная мера. Метрика шкалы jli предполагается изначально заданной и остающейся неизменной; 7) Соответственно, семантика каждого конкретного текста задается своей функцией распределения (плотностью вероятности) -- p(jLi). Будем полагать, что функция распределения достаточно гладкая и асимптотически приближается (если иное специально не оговорено) к оси абсцисс. В общем случае можно говорить о текстах, определяемых функцией распределения вероятности, задаваемой на многомерном пространстве. В тексте смыслы всегда оказываются заданными избирательно. Функция р(д) оказывается тем окном, через которое нам дана возможность всматриваться в семантический мир. Изменение текста -- его эволюция -- связано со спонтанным появлением в некой ситуации у фильтра--р(у/), мультипликативно взаимодействующего с исходной функцией р(д). Взаимодействие задается известной формулой Бейеса:

p(ju/y) = Kp(ju)p(y/ju),

где: p(|Li/y) -- условная функция распределения, определяющая семантику нового текста, возникающего после эволюционного толчка у; к -- константа нормировки. Формула Бейеса в нашем случае выступает как силлогизм: из двух посылок р() и р(у/) с необходимостью следует текст с новой семантикой р(|ы /у). В силлогизме Бейеса, в отличие от категорического силлогизма Аристотеля, как обе посылки, так и возникшее из них следствие носят не атомарный, а вероятностно размытый характер. Формула (теорема) Бейеса традиционно используется для вычисления апостериорных событий через априорные вероятности. В.В. Налимов сделал обобщение, придав статистической формуле новое -- логическое значение .

Основные положения вероятностной логики В.В. Налимова сводятся к следующему: 1) признается открытость семантической системы - она открыта спонтанному появлению фильтров; 2) признается трансперсональность сознания: спонтанность появления фильтров связывается с существованием трансличностного космического сознания; 3) бейесовский силлогизм применяется к смыслам, размытым на континууме - возможность появления атомарных (точечных) смыслов исключена; 4) логические операции носят числовой характер - в правой части формулы Бейеса стоит знак умножения, имеющий числовое раскрытие; 5) исключена возможность сильной дизъюнкции; язык оказывается свободным от закона исключения третьего, соответственно он свободен от разграничения истинности и ложности. Отсюда следует вывод В.В. Налимова о том, что творческое (дологическое) мышление по своей природе оказывается мифологичным .

Объясняющая сила модели сознания В.В. Налимова состоит в том, что она позволяет понять, как рождаются новые смыслы. Так, в книге «Вероятностная модель языка» им было показано, что понимание осуществляется через возникновение фильтра р(у/ц), сужающего словарный смысл слова в ситуации, задаваемой некоторым окружающим его контекстом у. «Отсюда, - пишет он, - наша способность понимать строго говоря, бессмысленные фразы» .

Предложенная модель позволяет, по мнению В.В. Налимова, объяснить: 1) понимание текстов, постоянно содержащих слова с размытыми смыслами; 2) процесс творчества - создание новых текстов; 3) поведение человека - изменение его ценностных представлений в новой ситуации; 4) семантическую многомерность личности; 5) смысл таких трудных представлений, как «нирвана», «свобода», «троичная модусность времени» (по Хайдеггеру); и пр.; 6) утверждение о вездесущности слабых форм сознания во всей Вселенной; 7) представление о самоорганизации как творческом процессе, проходящем некоторым единым образом во всем Мироздании - в космическом масштабе (отбор фундаментальных констант) в биологическом эволюционизме, в творчестве человека .

Понимание текстов, по Налимову, - это всегда творческий процесс. Любой текст, считает он, должен быть приближен к человеку, иначе он будет отторгнут. Приближение же текста к себе всегда достигается порождением соответствующих фильтров.

Понимание -это всегда пере-понимание того, что уже ранее как-то было понято - распаковано на семантическом континууме. Творчество - это распаковывание того, что оставалось скрытым на семантическом континууме малым вероятностным весом. Новые смыслы обретают большую вероятностную меру, прежние меркнут. «Это всегда спонтанное озарение, и поэтому здесь все непонятно для постороннего наблюдателя» .

Большая разъясняющая сила теории сознания В.В. Налимова обусловили наше стремление найти объяснение этому факту, а также получить научное обоснование ее положений в трудах ученых-психологов, изучающих познавательную деятельность.

Так, В.В. Налимов подчеркивает, что интерпретация текстов носит творческий, спонтанный, ситуационный, вероятностный характер истолкования текстов. Это вполне согласуется с данными психологии, а также с практикой исторического познания.

Многочисленные исследования специалистов научного творчества показывают, что процесс генерирования гипотез начинается интуитивно. Интуиция - это способность постижения истины путем прямого ее усмотрения без основания с помощью доказательства . Интуитивной способности человека свойственны 1) неожиданность решения задачи, 2) неосознанность путей и средств ее решения и 3) непосредственность постижения истины на сущностном уровне объектов .

Исследователи отмечают, что интуитивная способность образовалась, по-видимому, в результате длительного развития живых организмов вследствие необходимости принимать решения при неполной информации о событиях. Т.е. способность интуитивно познавать можно расценивать как вероятностный ответ на вероятностные условия среды . С этой точки зрения, поскольку ученому для совершения открытия даны не все посылки и средства, постольку он осуществляет именно вероятностный выбор.

К общим условиям формирования и проявления интуиции относятся следующие: 1) основательная профессиональная подготовка человека, глубокое знание проблемы; 2) активность в проблемной ситуации, действие у субъекта поисковой доминанты на основе непрерывных попыток решить проблему, напряженные усилия по решению проблемы или задачи; 3) наличие «подсказки».

Творческая интуиция определяется как специфический познавательный процесс, заключающийся во взаимодействии чувственных образов и абстрактных понятий и ведущий к созданию принципиально новых образов и понятий, содержание которых не выводится путем простого синтеза предшествующих восприятий или путем только логического оперирования имеющимися понятиями .

Так, один из крупнейших отечественных нейрофизиологов П.В. Симонов подчеркивает, что творчество имеет интуитивную, не контролируемую сознанием и волей подсознательную природу. В неосознаваемой деятельности мозга он выделяет три группы принципиально отличных друг от друга явлений. Это: 1) бессознательное (досознательное) - витальные (биологические) потребности; 2) подсознание - все то, что было осознаваемым или может стать осознаваемым в определенных условиях и 3) сверхсознание, механизмами которого представлено творческое начало в деятельности человека, - неосознаваемое рекомбинирование ранее накопленного опыта, которое пробуждается и направляется доминирующей потребностью в поиске средств ее удовлетворения.

Неосознаваемость этих первоначальных этапов всякого творчества представляет, по мнению П.В. Симонова, защиту рождающихся гипотез и замыслов от чрезмерного давления очевидности непосредственных наблюдений, от догматизма прочно усвоенных норм. «За сознанием остаются функции формулировки проблемы, ее постановки перед познающим умом, а также вторичный отбор порождаемых сверхсознанием гипотез, сперва путем их логической оценки, а затем в горниле экспериментальной, производственной и общественной практики» .

Подчеркивая в ер оятно стную природу сверхсознания, П.В. Симонов полагает, что оно не сводится к чисто случайному комбинированию хранящихся в памяти следов. Его деятельность трижды канализирована: 1) ранее накопленным опытом, включая присвоенный опыт предшествующих поколений; 2) задачей, которую перед сверхсознанием ставит сознание, натолкнувшееся на проблемную ситуацию; 3) доминирующей потребностью. Язык сверхсознания, как и всего неосознаваемого психического -переживание чувств, т.е. эмоции.

Основными этапами творческого акта, по Симонову, являются:

Постановка проблемы, задачи, подлежащей решению. Логика возникновения задачи, требующей творческого решения, может быть вполне осознаваемой, но иногда само обнаружение проблемы является подлинным открытием. Но и здесь усматривается определенная закономерность: не может быть гипотезы, свободной от опыта, накопленного сознанием.

Мотивация творчества. П.В. Симонов подчеркивает, что в иерархии мотивов творца решающую роль играет бескорыстная потребность познания истины, стремление к правде и красоте.

Подсказка, аналогия, служащая толчком для мгновенного озарения. Она непосредственно зависит от вышеназванной мотивационной доминанты.

Отбор генерированных сверхсознанием гипотез. Сначала он идет в сверхсознании, где отметаются самые нелепые и нежизнеспособные новации, а затем на уровне сознания правдоподобный вариант отбирается логикой с учетом информации, хранящейся в памяти. Потом этот вариант вносится на суд других людей и проверяется практикой .

Идея Налимова о том, что процедура интерпретации есть по существу вероятностное взвешивание смыслов на континууме посредством фильтров предпочтения перекликается с положениями теории немецкого социолога Г. Зиммеля. Зиммель показал, что прошлое - это тотальность, состоящая из бесконечного числа элементов и связей между ними. Непосредственно освоить эту бесконечность человеческое познание не может. Поэтому историк должен активно формировать объект познания в соответствии со своими познавательными установками, рассматривая историю в определенной, свойственной только ему перспективе. Эта перспектива определяет "световой конус", в который попадают факты прошлого, их анализируемые срезы и проекции, и, в конечном счете, формирует образ истории, обладающий лишь относительной истинностью и лишь частично верифицируемый .

ВЕРОЯТНОСТНАЯ ЛОГИКА

ВЕРОЯТНОСТНАЯ ЛОГИКА

Логическая , в которой высказываниям соответствует непрерывная шкала значений истинности от 0 до 1, причем нуль приписывается высказыванию о невозможном событии, а 1 - практически достоверному. В.л. формально можно рассматривать как разновидность многозначной логики, которая оперирует дискретными значениями истинности, а В.л. - непрерывным множеством значений в интервале от 0 до 1. Поскольку появлению случайного события из статистического коллектива можно приписать некоторую , то такую же вероятность можно соотнести с высказыванием, характеризующим это , а тем самым установить соответствие между событиями и высказываниями о них. В.л. опирается, однако, на логическую интерпретацию вероятности, в которой последняя рассматривается как между посылками и заключением индукции. Первые системы В.л. возникли именно в рамках логической интерпретации, нередко логическую вероятность называют также индуктивной вероятностью.
Системы В.л. могут строиться с помощью аксиоматического метода, когда аксиомами описываются свойства вероятностных высказываний, а все дальнейшие положения, или теоремы, логически выводятся из аксиом. Первую такую систему в 1921 построил известный англ. экономист Дж.М. Кейнс. Более совершенную аксиоматическую систему В.л. в 1939 создал англ. Г. Джеффрис. В существует подобных систем.
Др. системы В.л. основываются на индуктивной интерпретации вероятности как семантической степени подтверждения заключения или гипотезы посылками или данными. К таким семантическим системам принадлежит система, предложенная в 1950 Р. Карнапом, а также появившиеся позднее системы его последователей.

Философия: Энциклопедический словарь. - М.: Гардарики . Под редакцией А.А. Ивина . 2004 .

ВЕРОЯТНОСТНАЯ ЛОГИКА

логич. система, в которой высказываниям (суждениям, утверждениям, предложениям) , помимо истины и лжи, приписываются «промежуточные» истинностные значения, наз. вероятностями истинности высказываний, степенями их правдоподобия, степенями подтверждения и т. п. Поскольку вероятности естественно соотносить с некоторым событием, а наступление события есть , допускающий (хотя бы в принципе) эмпирич. проверку, то В. л. представляет собой уточнение индуктивной логики. Взаимные переходы от языка высказываний к языку событий и обратно совершаются т. о. , что каждому событию сопоставляется о его наступлении, а высказыванию сопоставляется событие, состоящее в том, что оказалось истинным. Специфика В. л. состоит в принципиальной неустранимости неполной достоверности («относит. истинности») посылок и выводов, присущей всякому индуктивному познанию.

Проблематика В. л. развивалась уже в древности (напр., Аристотель) , а в новое время - Г. В. Лейбницем, Дж. Булем, У. С. Джевонсом, Дж. Венном.

Как логич. система В. л.- разновидность многозначной логики: истинным высказываниям (достоверным событиям) приписывается истинностное (вероятность) 1, ложным высказываниям (невозможным событиям) - значение 0; гипотетич. же высказываниям может приписываться в качестве значения любое дей-ствит. из интервала (0,1) . Вероятность гипотезы, зависящая как от её содержания, так и от информации об уже имеющемся знании («опыта») , есть их . Над истинностными значениями (вероятностями) гипотез определяются логические операции: конъюнкция (соответствующая умножению событий в теории вероятностей) и дизъюнкция (соответствующая сложению событий) ; мерой (значением) отрицания гипотезы является вероятность события, состоящего в её неподтверждении. Значения гипотез образуют при этом т. н. нормированную булеву алгебру, аппарат которой позволяет легко аксиоматизировать теорию вероятностей и является простейшим вариантом В. л.

Интенсивное получила проблематика В. л., базирующаяся на связи теоретиковероятностных понятий с идеями теории информации и логич. семантики.

Философский энциклопедический словарь. - М.: Советская энциклопедия . Гл. редакция: Л. Ф. Ильичёв, П. Н. Федосеев, С. М. Ковалёв, В. Г. Панов . 1983 .

ВЕРОЯТНОСТНАЯ ЛО́ГИКА

логика, приписывающая высказываниям не только значение истины и лжи, но и промежуточные значения, к-рые она называет вероятностями истинности высказываний, степенями их правдоподобия, степенями подтверждения и т.п.; совр. индуктивной логики. Вообще , приписывающая высказываниям более чем два значения, наз. многозначной логикой. Если обозначить истину через 1, а через 0, то значениями в В. л. могут быть все действит. числа между нулем и единицей. Строящийся на этом фундаменте логич. аппарат В. л. применяется для того, чтобы оценить приближенно вероятность (или правдоподобие, или степень подтверждения) высказывания, к-рого неизвестна. Всякое такое высказывание в В. л. наз. гипотезой. Напр., мы можем говорить о вероятности гипотезы "завтра будет дождь". В зависимости от соответствия данной гипотезы метеорологич. данным, от степени точности этих данных можно говорить о высокой или низкой вероятности этой гипотезы. Т. о., вероятность гипотезы определяется относительно нек-рого знания – совокупности высказываний, истинность к-рых уже известна, и является функцией от двух аргументов – гипотезы и имеющегося знания. Если логически следует из имеющихся знаний, то она истинна в той же мере, как и эти знания, и получает относительно них значение 1; если она противоречит им, то она ложна в той же мере, в какой они истинны, и получает значение 0. Во всех остальных случаях она получает нек-рое промежуточное значение.

Многозначность вероятностной оценки гипотезы не противоречит тому факту, что сама гипотеза может иметь только одно из двух значений: истины или лжи (напр., дождь завтра или будет, или не будет). Это объясняется тем, что значение вероятности характеризует отношение гипотезы к действительности не непосредственно (непосредств. отношение гипотезы к действительности остается двузначным), а через др. высказывания, выражающие наши знания.

Вопрос о точном числовом определении вероятности одних высказываний относительно других является до сих пор предметом дискуссии и решается по-разному представителями разных направлений В. л. Вычисление вероятностей сложных гипотез, для к-рых известны вероятности составляющих их высказываний, во всех системах В. л. происходит по правилам математич. исчисления вероятностей, к-рое в наст. время представляет собой аксиоматич. систему. В такой системе определяются свойства тех абстрактных объектов, о вероятностях к-рых мы можем говорить, и правила получения одних вероятностей из других.

Для исчисления вероятностей, как и всякой аксиоматич. теории, безразлично, каким образом впервые получаются вероятностные значения; в нем формулируются лишь правила получения новых вероятностей из уже имеющихся. Значение аксиоматич. подхода к теории вероятностей (ведущую роль в разработке к-рого сыграли в 20–30-е гг. 20 в. сов. математики С. Н. Бернштейн и А. Н. Колмогоров) заключалось в том, что он позволил окончательно отделить формальное от его интерпретаций, т.е. правил его применения к конкретным объектам. В. л. как раз и является одной из таких интерпретаций этого формального исчисления, т.к. она конкретизирует объектов, относительно к-рых мы можем говорить об их вероятностях, и строит получения исходных вероятностных значений (наз. часто правилом индукции), к-рое имеет вид нек-рой функции от двух аргументов: рассматриваемой гипотезы и имеющегося знания. Множество возможных систем В. л. определяется множеством возможных вариантов правила индукции.

Аксиоматич. исчисление вероятностей имеет и др. интерпретацию. С ее помощью описываются массовые случайные события (случаи смертности и рождаемости, распределение скоростей молекул и т.п.). Вероятность события понимается как его относит. частота в достаточно длинном ряду событий этого класса. Напр., то, что вероятность выпадения пятерки при бросании кости, равная 1 /6, означает, что пятерка выпадает приблизительно в 1 /6 всех случаев при достаточно большом числе бросаний. Здесь задача интерпретации заключается в том, чтобы построить правило получения вероятностей из наблюдаемых частот (напр., определить, когда может считаться достаточно длинным, и т.п.), к-рое также иногда наз. правилом индукции, или правилом статистич. вывода. Первая (логич.) , т.е. В. л., используется для оценки гипотез при логич. анализе нашего знания. Вторая (частотная, статистич.) интерпретация используется для непосредств. описания событий объективной действительности и играет важнейшую роль в большинстве совр. наук и обществе. Часто именно эту статистич. интерпретацию называют теорией вероятностей.

Т.о., среди логич. проблем, связанных с понятием вероятности, следует различать собственно В. л., занимающуюся оценкой гипотез, и логич. статистики, относящееся к уточнению осн. понятий, связанных с теорией массовых случайных событий. Иногда оба эти аспекта считаются принадлежащими к В. л., к-рая в этом случае понимается более широко – как общая индуктивных правил и интерпретаций вероятности. Оценка истинности гипотез является важнейшей методологич. задачей. Всякое вновь высказываемое науч. положение можно рассматривать как гипотезу, истинность к-рой подлежит проверке. Такой гипотезой может являться науч. , и мы можем оценить, в какой степени он вытекает из имеющихся . данных. Т.о., в В. л. на более точном языке и в более общем виде формулируется классич. индуктивной логики – общих положений из единичных данных наблюдения и эксперимента. Обобщение этой проблемы проводится в двух направлениях. Во-первых, В. л. должна иметь не только формулировать закон, но и оценивать степень его подтверждения, что, в свою очередь, позволяет сравнивать различные гипотезы и выбирать из них наиболее подтвержденную. Во-вторых, В. л. включает в круг своего рассмотрения статистич. законы, с к-рыми не умела обращаться классич. индукт. логика. Поэтому В. л. является совр. формой индукт. логики.

Развитие В. л. связано с достижениями математической логики вообще. Точная формулировка ее проблем стала возможной лишь с 30-х гг. 20 в. Однако и теперь существуют различные мнения по ряду вопросов В. л., в частности такому важнейшему вопросу, как возможность приписывать высказываниям точные числовые значения. Рассел и Пойа, напр., считают, что такое приписывание принципиально невозможно. По их мнению, мы можем говорить лишь о большей или меньшей вероятности гипотезы в сравнении с др., но не о точном числовом значении этой вероятности. С помощью исчисления вероятностей можно выяснить лишь направление вероятности вывода, т.е. ее уменьшение или увеличение. В то же время существуют системы В. л., в к-рых вероятность гипотез оценивается количественно. Наиболее известны системы Рейхенбаха и Карнапа.

История В. л. восходит почти к тем же временам, что и классич. логики. Уже у создателя классич. логики – Аристотеля имеются исследования силлогизмов, к-рых вероятны. Зачатки В. л. можно найти также у древних скептиков – Карнеада и Пиррона. Карнеаду принадлежит понятия степени правдоподобия. Большой вклад в развитие В. л. был сделан Лейбницем, у к-рого уже имеются: непрерывная шкала вероятностей, достаточно четкое вероятности или правдоподобности как меры нашего знания и попытки выяснить закрномерности, возникающие при различных операциях над вероятностями. Лейбниц положил в основу своей В. л. "равно принимать в расчет равноценные предположения", к-рый он рассматривал как один из короллариев своего закона достаточного основания. Этот принцип, часто называвшийся впоследствии принципом индифферентн о с т и, долгое время был осн. принципом В. л. К этому же времени относится создание Ферма и Паскалем матем. исчисления вероятностей. До последней трети 19 в. матем. исчисление вероятностей развивалось в тесной связи с его логич. интерпретацией, к-рая считалась единственной. Индукт. правилом являлся принцип индифферентности, согласно к-рому вероятность каждого из взаимоисключающих событий, из к-рых мы не имеем оснований предпочесть к.-л. одно (т.е. к-рые равновозможны), равна Ι/n. Определение вероятности через равновозможные случаи получило классического. Классич. вероятности была завершена в трудах Пуассона и Лапласа.

Однако с развитием естествознания, и в особенности статистич. физики, исчисление вероятностей стало применяться к новому кругу объектов – массовым случайным событиям. Вероятность стала уже объективной, измеримой характеристикой явлений действительности. Физиков не могла удовлетворить логич. концепция вероятности, рассматривавшая вероятность как меру нашего знания. Многообразие и сложность соотношений между массовыми событиями, вскрытые новой физикой, никак не укладывались в рамки понятия равновозможности, с к-рым по крайней мере в то время была самым существенным образом связана логич. концепция вероятности. Попытки же насильственным образом произвести такую операцию втискивания неизбежно приводили к субъективизации ряда физических понятий, необходимых при описании вполне объективных явлений. Применение логич. концепции вероятности к естествознанию приводило, т.о., на той стадии развития логики и естествознания к субъективному идеализму. В результате пересмотра понятий теории вероятностей (следует особо отметить труды Пуанкаре, Смолуховского, нем. ученого Мизеса) возникла частотная, статич. концепция вероятности, к-рая вначале также была объявлена единственно возможной. Такова, напр., была концепция Мизеса, к-рый определял вероятность события как предел, к к-рому стремится относит. частота появления данного события в бесконечном ряду некоторого фиксированного класса событий. Однако определение вероятности черев предел имеет серьезные как методологич., так и математич. дефекты; практически оно неприменимо, т.к. мы всегда имеем дело с конечным рядом событий. Дав резкую и в осн. справедливую критику классич. концепции, Мизес допустил др. крайность: он отрицал вообще всякую возможность применения исчисления вероятностей к логике, считая, что единств. объектом теории вероятностей являются массовые случайные события.

Широкое применение теории вероятностей в естествознании и пересмотр классич. концепции вероятности в конце 19 – нач. 20 вв. поставили новые задачи перед логикой, к-рая должна была дать правила индуктивного (в т. ч. и статистич.) вывода, а в области оценки гипотез критически пересмотреть принцип индифферентности. В работах Буля и Джевонса проблемы индукции рассматривались в связи с начавшей развиваться матем. логикой. Эти новые задачи нашли свое прежде всего в попытке распространить частотную концепцию вероятности на логику. Идея такого распространения была высказана в конце 19 в. англ. логиком Дж. Венном в книге "Логика случая" (J. Venn, The logic or chance, 1876), т.е. до появления концепции Мизеса. Наиболее полное выражение частотная концепция В. л. получила в 30-х гг. 20 в. в работах Рейхенбаха, к-рый, положив в основу определение вероятности по Мизесу, распространил его на логику.

Возможность такого распространения доказала, по мнению Рейхенбаха, что частотная концепция вероятности является универсальной и единственной. Рейхенбах дополнил определение Мизеса, сформулировав правило установления вероятности из конечной наблюдаемой частоты (правило индукции Рейхенбаха). Однако его формулировка определяет фактически множество таких индуктивных правил, не устраняя, т.о., произвола в установлении числовых значений вероятностей. В статистич. концепции вероятность является характеристикой не отд. события, а нек-рой последовательности событий. Если мы говорим, что вероятность выпадения пятерки при бросании кости равна 1 /6, то это значит, что при достаточно большом числе бросаний пятерка выпадает приблизительно в 1 /6 всех бросаний. Эта величина, т.о., определяется экспериментально, путем подсчета. Но мы не можем говорить о том, что след. бросание кости даст с такой-то вероятностью пятерку. Пятерка выпадает или не выпадает, и проверить нашу вероятностную оценку гипотезы о ее выпадении не представляется, по Мизесу, возможным. Именно поэтому Мизес считал, что говорить о вероятности отд. случая бессмысленно, и отказывался от применения исчисления вероятностей к оценке гипотез, т.е. к логике. Распространение Рейхенбахом частотной концепции вероятности на логику и заключалось в том, что он попытался дать статистич. вероятностей оценки гипотез. Этот метод состоит в следующем. Если мы делаем гипотезу о выпадении пятерки, то примерно в 1 /6, всех случаев она оказывается истинной. Т. о., наша гипотеза образует нек-рую последовательность высказываний, каждый элемент к-рой – ложное или истинное высказывание. Относит. частота истинных высказываний и является вероятностью данной гипотезы. В. л., по Рейхенбаху, есть логика пропозициональных последовательностей, последова- тельностей высказываний. Последовательность, состоящая из одного элемента, относит к данной гипотезе одно из двух значений: 1 или 0. Бесконечная (у Рейхенбаха она может быть и трансфинитной) последовательность может относить к гипотезе любые действит. числа от 0 до 1.

Однако этот метод связан с серьезными затруднениями. В действительности мы имеем дело лишь с конечным отрезком пропозициональной последовательности. Из конечной частоты мы должны заключить о вероятности во всей бесконечной последовательности. Это является нек-рой гипотезой (по Рейхенбаху, ставкой), надежность к-рой зависит от длины отрезка и также нуждается в оценке. Эта будет уже ставкой второго порядка и т.д. Образуется сколь угодно длинная система ставок, оценка последней из к-рых всегда неизвестна. Не говоря уже об искусственности и громоздкости такого метода, его применение к оценке гипотез потребовало бы записи всего нашего знания в терминах пропозициональных последовательностей, что практически неосуществимо.

Этими затруднениями, к-рые обнаружились еще у Венна, во мн. объясняется тот факт, что нек-рые исследователи пошли по др. пути – "усовершенствования" старой, классич. концепции и уточнения ее осн. принципа – принципа индифферентности. Сюда относятся, прежде всего, работы Кейнса и Джефриса. К ним примыкает по своим идеям Витгенштейн, к-рый, впрочем, не дал законченной концепции.

Кейнс определяет вероятность как степень разумной уверенности, понимая ее, т.о., как субъективную категорию. Он исходит из того, что обычная p & q является частным случаем более широкой вероятностной импликации вида "p более или менее влечет q", что можно записать так: p оправдывает разумную уверенность в q, степень к-рой = С. Тогда мы скажем, что между p и q существует отношение вероятности, равное C (q/p = C). Правда, вероятность C, по Кейнсу, вообще говоря, не имеет численной величины. Больше того, вероятности весьма редко можно сравнивать друг с другом, ибо, хотя они, согласно Кейнсу, и расположены между 0 и 1, но находятся не на одной прямой, а как бы на разных кривых, соединяющих точки 0 и 1 так, что для сравнения вероятностей необходимо еще знать, находятся они на одной линии.

Для такого сравнения вероятностей служит уточненный Кейнсом принцип индифферентности, к-рый становится у него одним из осн. принципов теории познания. Это уточнение Кейнс проводит с помощью понятия релевентности, к-рое заключается в следующем. Пусть мы имеем гипотезу h, имеющую нек-рую вероятность относительно знания l. Тогда i будет релевентно по отношению к l, если его конъюнктивное присоединение к l меняет вероятность h. Релевентность может быть положит. или отрицат. в зависимости от увеличения или уменьшения вероятности. В терминах релевентности оказывается возможным исследовать одних высказываний с другими, определить равновероятность неск. гипотез относительно нек-рого знания и благодаря этому уточнить принцип индифферентности. Однако количественно измерить вероятности с помощью одного понятия релевентности Кейнс не смог. Теория Кейнса сыграла определенную роль в развитии В. л. Однако он ошибочно считал логич. концепцию вероятности единственно правомерной и всюду применимой, в т. ч. и для описания статистич. объектов. Описание же статистич. объектов – физич. и др. явлений реального мира – в терминах кейнсовской разумной уверенности неизбежно приводит через субъективизацию этих явлений и объектов к . идеализму. Именно за это концепция Кейнса была подвергнута резкой критике со стороны мн. математиков и естествоиспытателей.

Т.о., история теории вероятностей и В. л. показали, что ни статистич., ни логич. концепции вероятности не являются единственными. Логич. концепция применима в области логики, анализа связей между высказываниями; статистич. – в области описания массовых случайных событий, анализа . связей между явлениями. На различения двух понятий вероятности впервые указал Р. Карнап, введя в 1945 понятия вероятность 1 (степень подтверждения) и вероятность 2 (относительная частота). Собственно В. л. Карнап считает теорию вероятности 1, или теорию степени подтверждения. Он строит семантич. систему с фиксированным логич. языком, типа узкого исчисления предикатов с равенством, содержащим число предикатов и не более чем счетное число . констант. В этой системе определяется понятие логич. связи через понятия описания состояния и области высказывания (см. Логическая семантика). Каждому высказыванию в этой системе приписывается нек-рая числовая . Правило гадания этой меры (m-функция) также определяется через понятия описания состояния и области. Для каждых двух высказываний l и h, имеющих меру, может быть определена функция C (h, l), числовое значение к-рой показывает, в какой степени знание l подтверждает гипотезу h. Эта функция является индукт. правилом в системе Карнапа. Карнап доказывает, что при нек-рых требованиях, наложенных на С-функции, они подчиняются аксиоматике обычного исчисления вероятностей. Однако этим требованиям удовлетворяет бесчисл. множество С-функций, к-рое Карнап называет множеством регулярных С-функций.

Введя более сильные требования, Карнап строит одну конкретную С-функцию. В частности, в ее построении существ. роль играет заимствованное у Кейнса понятие релевентности. Для уяснения различий в теориях Рейхенбаха и Карнапа приведем , показывающий их подходов к решению одной и той же задачи. Предположим, что среди 30 событий, обладающих свойством М1, имеется 20, обладающих свойством М2. Гипотеза h, вероятность которой нужно оценить, состоит в том, что следующее событие будет также обладать свойством M2. Согласно теории Рейхенбаха, мы должны сделать на эту гипотезу некоторую ставку первого порядка, вес которой можно определить из ставки второго порядка, состоящей в данном случае в апелляции к положению дел в прошлом, когда относительная частота событий, обладающих свойством М2, составляла, естественно, 2 /3. Согласно же Карнапу, эта ставка второго порядка – апелляция к прошлому опыту – как раз и представляет собой один из аргументов С-функции, именно знание l. Далее, исходя иэ этого, знание l, уже чисто дедуктивно, т.е. с помощью определенной чисто математической процедуры, мы вычисляем C (h, l), естественно в данном случае также = 2 /3.

То, что данный отрезок является слишком коротким и, в общем, может далеко не представлять состояния вещей во всей последовательности, обстоятельство, весьма важное для Рейхенбаха, для Карнапа не имеет значения. Данная гипотеза оценена при данных знаниях, и в этой ситуации эта оценка истинна. Она не нуждается еще в какой-то неквалифицированной ставке. Т. о., как видим, в отличие от Рейхенбаха, В. л. Карнапа является двузначной, а вовсе не многозначной логикой. Недостатки системы В. л. Карнапа связаны с недостатками его семантики, в частности с неудовлетворительностью определения логич. связи через понятие описания состояния, бедностью языка, не позволяющей формализовать сколько-нибудь значит. области знания. Кроме того, его С-функция дает очень малую (или равную нулю) степень подтверждения для всеобщих высказываний и, следовательно, для законов природы, что, конечно, не соответствует реальной практике науки. В последнее время значение В. л. возрастает в связи с развитием информационно-логич. машин, автоматич. перевода.

Лит.: Аристотель, Аналитики первая и вторая, пер. с греч., [М.], 1952; Джевонс В. С., Основы науки, пер. с англ., СПБ, 1881; Колмогоров А. Н., Основные понятия теории вероятностей, пер. с нем., М., 1936; Лаплас, Опыт философии теории вероятностей, пер. с ., М., 1908; Лейбниц, Новые о человеческом разуме, пер. с нем., М.–Л., 1936; Mизес Р., Вероятность и , пер. с нем., М.–Л., 1930; Πойа Д., Математика и , пер. с англ., т. 1–2, М., 1957; Πорецкий П. С., Сообщение об основаниях математической логики, в кн.: Собрание протоколов секции физико-математических наук об-ва естество- испытателей при имп. Казанском университете, т. 1, Казань, 1883; Рассел Б., Человеческое , его сфера и границы, пер. с англ., М., 1957; Смолуховский Μ., Ο понятии случайности и о происхождении законов вероятностей в физике, "Успехи физ. наук", 1927, т. 7, вып. 5; Стрьюк Д. Дж., К обоснованию теории вероятностей, [пер. с англ.], "Под знаменем марксизма", 1934, No 2; Хинчин А. Я., Учение Мизеса о вероятностях и принципы физической статистики, "Успехи физ. наук", 1929, т. 9, вып. 2; Boole G., Studies in logic and probability, L., 1953; Carnap R., Logical foundations of probability, Chi., 1950; его же, Continuum of inductive methods, Chi., 1952; Hagstroem K. G., Les préludes antiques de la théorie de probabilité, Stockh. 1939; Greniewski H., Elementy logikl indukcji, Warsz., 1955; Jeffreys H., Theory of probability, Oxf., 1939; Kemeny J. G., Extension of methods of inductive logic, "Philosophical studies", Minneapolis (Minnesota), 1952, v, 3, No 3; Keynes J. M., Treatise on probability, 2 ed., L., 1952; Кries, Die Prinzipien der Wahrscheinlichkeitsrechnung. Eine logische Untersuchung, Tübingen, 1927; Leibniz, "De condicionibus" , в кн.: Couturat, La Logique de Leibniz d"après des documents inédits, P., 1901; Lukasiewicz J., Die logischen Grundlagen der Wahrscheinlichkeitsrechnung, Kr., 1913; Reichenbach, The theory of probability, 2 ed., Los–Ang., 1949; Riсhter H., Zur Grundlegung der Wahrscheinlichkeitstheorie, "Math. Ann.", Β., 1952, Bd 125, Η. 2

В. Пятницын. Москва.

Философская Энциклопедия. В 5-х т. - М.: Советская энциклопедия . Под редакцией Ф. В. Константинова . 1960-1970 .

ВЕРОЯТНОСТНАЯ ЛОГИКА

ВЕРОЯТНОСТНАЯ - раздел логики, изучающий логические системы, в которых множеством значений истинности высказываний служат вероятности (степени правдоподобия или подтверждения). Чаще всего вероятности добавляются к системе пропозициональной логики в качестве нового отношений, соединяющего множество высказываний и множество их значений из интервала Q

А)- вероятность истинности высказывания А. Т. о., система аксиом вероятностной логики состоит из трех частей; пропозициональной, задающей операции между высказываниями; арифметической, задающей операции между значениями вероятности; вероятностной, задающей функцию приписывания высказываниям их значений. Обычно арифметическая часть опускается и тогда система аксиом и правил вывода может иметь следующий вид: AI. Пропозициональное исчисление, АВ1. 0 АВ2. Р(ЛЛ)=1

АВЗ. Р(А&ВС)=Р(АС)Р(.ВАС)

АВ4. -)В-Р(АВ)”1-Р(АВ)

АВ5. tA=C)&(B"D)i-P(AB)”P(CD), где Р{АВ) есть вероятность истинности А при условии истинности В.

Нередко вероятностную логику рассматривают как уточнение индуктивной логики. Это связано с тем, что отношение между посылками индуктивного рассуждения можно оценивать с помощью вероятности. Значения этой вероятности можно определить либо численно, либо посредством сравнения понятий (больше, меньше, равно). Еще одной разновидностью систем вероятностной логики являются системы прагматической вероятностной логики, в которых понятие вероятности используется для анализа прагматических аспектов исследования. К подобным логикам относятся вероятностные логики действия, вероятностные логики выбора, вероятностные логики изменения, вероятностные логики принятия решения, вероятностные логики предпочтения. При этом в ряде систем понятие вероятности в явном виде не фигурирует, но связь ее с основными понятиями в каждом случае можно легко установить.

Различение между знанием достоверным и правдоподобным (вероятностным) мы встречаем еще у элеатов (Парменид). Значительное уделяет в своих работах по логике исследованию познания неопределенных ситуаций и Аристотель. Он противопоставляет аподиктическое, доказательное знание, знанию диалектическому и эвристическому, полученному с помощью умозаключений, основанных на проблематических посылках. Идеи Аристотеля не получили развития. Лишь с возникновением в 17 в. математической теории вероятностей можно говорить об оживлении философского интереса к исследованию вероятностных методов. Лейбниц пишет в этой связи о необходимости нового раздела логики, основывающегося на тех новых способах рассуждений и понятиях, которые потребовались для разработки математической теории вероятности. С ним согласен и Я. Бернулли, который вслед за Лейбницем истолковывая вероятность как степень уверенности. Он рассматривает различные виды аргументов и проблему оценки их весомости для вычисления вероятностного заключения. И. Г. Ламберт идет еще дальше, и там, где Бернулли говорите вероятности “вещей” и “дел”, Ламберт прямо говорит о вероятности высказываний. К 19 в. относится предложение представителей концептуалистского понимания логики (Буль , Джевонс, Де Морган, Порецкий) перевести классическую математическую теорию вероятности на логики высказываний. Среди других логиков 19 в., уделивших много внимания исследований природы вероятности, был Ч. С. Пирс. Однако он не подвергал систематическому рассмотрению формальные основания вероятностного вывода. Другой подход развивается в работах представителей “содержательной логики”, в частности у Дж. Венна, чья концепция представляет собой первую систематическую попытку развить теорию вероятностей на частотной основе. Наиболее интересными и фундаментальными из всех исследований в этой области были исследования Б. Больцано, к сожалению, незаслуженно забытые.

Первые аксиоматические системы, использующие вероятность как логическое отношение между высказываниями, были построены С. Н. Бернштейном в России (1917) и Дж. М. Кейнсом в Англии (1921). Но последний выходит за рамки обычного исчисления вероятности. (Он не ограничивает значения вероятности областью действительных чисел и, кроме того, у него существуют несравнимые по величине вероятности.)

Дальнейшее развитие идеи Кейнса получили в работах Г. Джеффри и Б. Купмана. В более поздней системе Р. Карнапа вместо функции Р(АВ) из аксиом АВ1- АВ5 используются функции уверенности. Помимо этого используются также функции правдоподобия и функции подтверждения.

Несколько иначе рассматриваются подобные проблемы в системах вероятностной логики, основанных на эпистемологической интерпретации вероятности (Н. Гудмен, Г. Кайберг). В них вводится вероятностное отношение на множестве предложений (“системе знаний”) и если об эквивалентности двух предложений считается разумным, то эти предложения должны иметь одинаковые вероятности. При статистической интерпретации вероятности (Я. Шинделяр) место системы знаний занимает система допущений. Каждая процедура статистического вывода характеризуется при этом конкретным отношением выводимости, числом η рассмотренных допущений и числом т (или отношением т/п) тех допущений, для которых имеет место данное отношение выводимости. С металингвистической интерпретацией имеет дело система Г. Рейхенбаха (1949), где вероятность высказываний вычисляется как относительная частота истинности высказываний этого типа в их бесконечной (или конечной) вероятностной последовательности.

А непрерывная шкала значений истинности от 0 до 1, так, что ноль соответствует невозможному событию, единица - практически достоверному . Значения истинности в вероятностной логике называются вероятностями истинности высказываний, степенями правдоподобия или подтверждения .

Проблематика вероятностной логики начала развиваться в древности, например, Аристотелем и в новое время - Г. В. Лейбницем , Дж. Булем , У. С. Джевонсом , Дж. Венном , в дальнейшем Г. Рейхенбахом , Р. Карнапом , Ч. С. Пирсом , Дж. М. Кейнсом и другими, в России - П. С. Порецким , С. Н. Бернштейном и другими .

В настоящее время вероятностная логика находит наибольшее применение в качестве современной формы индуктивной логики . Новым стимулом к возникновению систем вероятностной логики послужил прогресс в развитии приложений к искусственному интеллекту .

См. также

Напишите отзыв о статье "Вероятностная логика"

Примечания

Отрывок, характеризующий Вероятностная логика

Наташа, бледная, строгая сидела подле Марьи Дмитриевны и от самой двери встретила Пьера лихорадочно блестящим, вопросительным взглядом. Она не улыбнулась, не кивнула ему головой, она только упорно смотрела на него, и взгляд ее спрашивал его только про то: друг ли он или такой же враг, как и все другие, по отношению к Анатолю. Сам по себе Пьер очевидно не существовал для нее.
– Он всё знает, – сказала Марья Дмитриевна, указывая на Пьера и обращаясь к Наташе. – Он пускай тебе скажет, правду ли я говорила.
Наташа, как подстреленный, загнанный зверь смотрит на приближающихся собак и охотников, смотрела то на того, то на другого.
– Наталья Ильинична, – начал Пьер, опустив глаза и испытывая чувство жалости к ней и отвращения к той операции, которую он должен был делать, – правда это или не правда, это для вас должно быть всё равно, потому что…
– Так это не правда, что он женат!
– Нет, это правда.
– Он женат был и давно? – спросила она, – честное слово?
Пьер дал ей честное слово.
– Он здесь еще? – спросила она быстро.
– Да, я его сейчас видел.
Она очевидно была не в силах говорить и делала руками знаки, чтобы оставили ее.

Пьер не остался обедать, а тотчас же вышел из комнаты и уехал. Он поехал отыскивать по городу Анатоля Курагина, при мысли о котором теперь вся кровь у него приливала к сердцу и он испытывал затруднение переводить дыхание. На горах, у цыган, у Comoneno – его не было. Пьер поехал в клуб.
В клубе всё шло своим обыкновенным порядком: гости, съехавшиеся обедать, сидели группами и здоровались с Пьером и говорили о городских новостях. Лакей, поздоровавшись с ним, доложил ему, зная его знакомство и привычки, что место ему оставлено в маленькой столовой, что князь Михаил Захарыч в библиотеке, а Павел Тимофеич не приезжали еще. Один из знакомых Пьера между разговором о погоде спросил у него, слышал ли он о похищении Курагиным Ростовой, про которое говорят в городе, правда ли это? Пьер, засмеявшись, сказал, что это вздор, потому что он сейчас только от Ростовых. Он спрашивал у всех про Анатоля; ему сказал один, что не приезжал еще, другой, что он будет обедать нынче. Пьеру странно было смотреть на эту спокойную, равнодушную толпу людей, не знавшую того, что делалось у него в душе. Он прошелся по зале, дождался пока все съехались, и не дождавшись Анатоля, не стал обедать и поехал домой.

Модальная логика. Вероятностная логика

1. Сущность модальной логики

Традиционная или классическая логика, которую мы до сих пор рассматривали, является самой простой и наиболее употребительной логической системой. Она исходит из того, что атомарные (простые) суждения и понятия, из которых строятся рассуждения и которые уже не анализируются, либо истины, либо ложны, но ни то ни другое вместе. Однако многие понятия и суждения повседневных и научных рассуждений не так хорошо укладываются в категории истинных и ложных. Истинностное значение суждения «Вероятно, завтра будет дождь» весьма и весьма не определено. Некоторые логики, начиная с Аристотеля, стали учитывать различие между истинами, являющимися таковыми, так сказать, в силу необходимости, и истинами случайными. Так возникли модальная логика и вероятностная логика.

В отличие от классической логики, приписывающей суждениями и понятием два истинностных значения: истина и ложь, модальная логика оперирует такими истинностными значениями, как «возможно», «необходимо», «невозможно», и т.д. Первую попытку построить модальную логику предпринял Аристотель в своем сочинении «Первая и вторая аналитики» (ей посвящены главы третья и восьмая – двадцать вторая «первой аналитики»). Однако, как подметил Я. Лукосевич (1878–1956), аристотелевское изложение модальной логики не было свободно от недостатков. Ученик Аристотеля Теофраст (370–288 до н. э.) уточнил учение Аристотеля о модальности суждений. Средневековые схоласты развили аристотелевскую модальную силлогистику. Современные исследования в области модальной логики характеризуются стремление построить аксиоматические системы модальной логики. Наиболее известные из них это системы Льюиса, Аккермана и Лукасевича.

Модальная и вероятностная логики – довольно специфические ветви логики. Знакомство с их основами необходимо для понимания методологии научного исследования.


2. Модальность суждений

Под модальностью суждений понимается различия между суждением в зависимости от того, выражают ли они необходимую или вероятностную (случайную) связь между субъектом и предикатом. По модальности суждения делят на три группы: суждения возможности (проблематические), суждения действительности(ассерторические) и суждения необходимости(аподиктические). В суждении возможности отображается возможность наличия или отсутствия признаков у предмета, о котором говорится в данном суждении. Его формула «S возможно есть (не есть) Р ». Таким будет, например, суждение «Возможно в Киеве в апреле этого года будет снег». В суждении действительности констатируется наличие или отсутствие у предмета того или иного признака. Его формулы «S есть (не есть) Р ». Суждение «Киев стоит на Днепре» – это суждение действительности. В суждении необходимости отображается такой признак, который имеется (отсутствует) у предмета при всех условиях. Его формула «S необходимо есть (не есть) Р ». примером суждения необходимости может быть следующее суждение: «Тело, лишенное опоры, падает на Землю».

Суждения возможности, действительности и необходимости делятся по качеству на утвердительные и отрицательные, а также по количеству на частные и общие.

В модальной логики различают логические и физические модальности. Логические модальности – это законы логики и математики. В число физических или каузальных (причинных) модальностей входят все законы экспериментальных наук. Так, суждение «Не верно, что Р и не‑Р », «2+2=4 » и т.п. выражают логические модальности, а суждения «PV=RT », «U=IR » и т.п. – физические.

Различают также абсолютные и относительные модальности. К абсолютным модальностям относят законы логики, математики, других наук необходимые сами по себе, независимые от чего бы то ни было. Это скажем, суждения «А=А », «2+3=5 », «S=Vt » и т.д. Относительные модальности являются таковыми, необходимо или не необходимо зависимы от чего-либо.

Такими модальностями будут, например, суждения: «Прямоугольник является квадратом, если его стороны равны», «Вода кипит при 100 0 С при атмосферном давлении 760 мм ртутного столба» и т.п.

Логические и физические модальности, независимо от того абсолютны они или относительны, объединяются в алетевтические модальности.

Модальности, характеризующие допустимые (или недопустимые) поступки людей, называются деонтологическими. Они выражаются в суждениях, в которых употребляются такие слова (модальные операторы), как «обязательно», «разрешено», «запрещено», «имеют право» и др. Примерами таких модальностей будут суждения: «На Украине пропаганда войны запрещена», «Граждане Украины имеют право исповедовать любую религию или никакую, быть атеистами» и т.п. Деонтологические модальности являются предметом изучения таких наук как этика, юриспруденция.

Модальности, характеризующие доказательность каких-либо суждений, называются эпистемологическими. В суждениях эпистемологической модальности употребляются такие слова (модальные операторы), как «доказуемо», «опровержимо». Примерами таких модальностей могут быть суждения: «Доказуемо, что на Марсе есть жизнь», «Опровержимо, что свет имеет волновую природу» и т.д.

Эпистемологические модальности по своим свойствам близки к алетевтическим модальностям, при чем оператору «доказуемо», соответствует оператор «необходимо», оператору «опровержимо» – оператор «невозможно».

Наконец, иногда различают модальность de dicto («о речи») относящиеся к суждению в целом и de re («о вещи»), которые относятся к предикату. Так, суждение «Возможно, что на Марсе есть жизнь» будет суждением de dicto, а суждение «На Марсе возможна жизнь» – de re. Однако в большинстве современных системах модальной логики модальности интерпретируются как «абсолютные» логические модальности de dicto.


3. Модальная силогистика

Модальная силлогистика Аристотеля является крайне сложной логической системой как по своему содержанию, так и по числу модусов (их по меньшей мере 137) Аристотель последовательно рассматривает силлогизмы, в которых одна из посылок является проблематической (символически обозначается Р r ) или аподиктической (А Р ), или ассерторической (А s ). Возможное в сочетании этих посылок: 1) А р А р ; 2) А р А s ; 3) А s А р ; 4) Р r Р r ; 5) Р r А s ; 6) А s Р r ; 7) Р r А р ; 8) А р Р r . Это следует читать так: «1) большая посылка аподиктическая, меньшая – аподиктическая; 2) большая посылка аподиктическая, меньшая – ассерторическая и т.д.». В каждом из этих случаев он строит модусы, подбирая в качестве посылок общеутвердительные, общеотрицательные, частноутвердительные и частноотрицательные суждения. Руководствуясь аналогией с расположением терминов в посылках І, ІІ, ІІІ фигур категорического силлогизма, он решает задачу, какой вывод вытекает из данного сочетания посылок.

Так, подбирая посылки по аналогии с расположением посылок в 1 модусе 1 фигуры АМР Ù ASM→АSP мы получаем задачу: если всякому у необходимо присуще х и всякому z необходимо присуще у , то? в этом случае мы не вправе заменить вопросительный знак общеутвердительным аподиктическим суждением. Мы должны довольствоваться ассерторическим суждением: всякому z присуще х . Еще например, подбирая в четвертой группе (Р r Р r ) посылки согласно модусу АМР Ù YSM→YSP ІІІ фигуры получаем: если всякому у может быть присуще х и некоторым у может присуще z , то? Ответом будет вывод некоторым z может быть присуще х .

В ряде случаев трудно бывает сразу интуитивно решить, какой должен быть вывод при данном подборе посылок, являющимися модальными высказываниями и требуется тщательное изучение этих случаев.

В формализованных аксиоматических системах модальной логики эти вопросы решаются с помощью простой процедуры следования (правда, для введения этой процедуры требуется очень сложный символический язык, который вряд ли смогут понять нематематики).

Имеют место следующие содержательные правила для умозаключений модальности. В каждом истинном модус можно заключать:

1) от необходимости к действительности;

2) от невозможного к недействительному;

3) от необходимого и действительного к возможному;

4) от невозможного и недействительного к не необходимому.

Нельзя заключать:

1) от возможного к действительному;

2) от действительного к необходимому;

3) от не необходимости к недействительности;

4) от недействительности к невозможности.


4. Вероятностная логика

В вероятностной логике исследуются рассуждения с суждениями вероятности. В этих суждениях что-то утверждается или отрицается с известной степенью правдоподобия. При определении вероятностей применяются правила математического исчисления вероятностей. Это делается тремя основными путями.

Индуктивное или классическое определение вероятностей было развито Л. Ферма, Я. Бернули (1654–1705), П. Лапласом (1749–1827) и др. Оно основано на анализе равновероятных исходов мыслимого эксперимента. Если все исходы этого мыслимого эксперимента составляют n , а, m – число тех наступления события А в этом эксперименте, вероятность которого хотят найти, то

Р (А)=


Например, исходя из симметрии игральной кости до ее подбрасывания легко подсчитать, что вероятность выпадения более четырех очков (событие А ) равна 1/3. В самом деле, вероятность выпадения пяти очков равна, вероятность выпадения шести очков-то же. Следовательно,

Р (А)=

В ХХ в. сначала Р. Мизес, а затем Г. Рейхенбах обратили внимание на то, что часто интересуемые нас события опосредованы такой массой обстоятельств, что учесть их и априорно предсказать, с какой вероятностью из них будут вытекать эти события, не представляется возможным. Поэтому на практике приходится ограничиваться приближенной оценкой вероятности, получаемой из обобщения ряда наблюдений или физических экспериментов. Вероятность события А , т.е. Р (А), по Мизесу и Рейхенбаху представляет собой отношения числа m появления события А в n наблюдениях или экспериментов, т.е.

Р (А)=


Формулы вычисления вероятности события А при первом и при втором подходах совпадают. Но смысл их совершенно различен. При первом подходе вероятность вычисляетсяаpriori (до опыта), при втором apasteriori (после опыта), т.е. статистически. При первом подходе вероятностная логика может рассматриваться как расширение логики модальной, при втором – логики индуктивной.

В аксиоматической теории вероятностей вопрос о том, как определяются вероятности основных событий, не играет роли. В основу этой теории, развитой С.Н. Бернштейном, А.Н. Колмогоровым, А.Я. Хичиным лежит некоторая система аксиом, указывающая основные правила составления вероятностей сложных событий. Произведением событий А и В называется событие «А и В », суммой – событие «А или В » и т.д. вероятностью события называется число Р обладающее следующими свойствами: 0≤р(A)≤1 ; р (1)=1 ; р(0)=0 ; если А Ì В , то Р(А) ≤ Р (В) ; если А Ç В=0 , то р (А или В )= Р(А) + Р (В) и т.д.

Аксиоматическое построение теории вероятности превращает ее в раздел чистой математики.



Литература


1. Логика. К. – Хатнюк В.С. 2005 г.

2. Логика – искусство мышления. Тимирязев А.К. – К. 2000 г.

3. Философия и жизнь – журнал – К. 2004 г.

4. История логики и мышления – Касинов В.И. 1999.

5. Логика и человек – М. 2000.

6. Философия жизни. Матюшенко В.М. – Москва – 2003 г.

7. Философия бытия. Марикова А.В. – К. 2000 г.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Cтраница 1


Вероятностная логика - логика, в к-рой высказывания имеют на только значения истины и лжи, но и промежуточное значение, наз. Строящийся на этом фундаменте логический аппарат применяется для приближенной оценка гипотез не путем их соотнесения с действительностью, а через др. высказывания, выражающие наши знания. Если ft логически следует из k, то она истинна в той же мере, что и k; если ft противоречит k, то она ложна; во всех остальных случаях р получает промежуточное значение.  

Вероятностная логика - логика, в к-рой высказывания имеют не только значения истины и лжи, но и промежуточное значение, наз. Строящийся на этом фундаменте логический аппарат применяется для приближенной оценки гипотез не путем их соотнесения с действительностью, а через др. высказывания, выражающие наши знания. Если h логически следует из k, то она истинна в той же мере, что и k; если h противоречит k, то она ложна; во всех остальных случаях р получает промежуточное значение.  

Вероятностная логика - это непрерывная логика, в которой всем логическим формулам приписывается вероятность. Здесь вероятность вновь соответствует законам Байеса.  

Нейман, Вероятностная логика и синтез надежных организмов из ненадежных компонент, Сб.  

Нейман, Вероятностная логика и синтез надежных организмов из ненадежных компонент, в сб.  

Нейман, Вероятностная логика и синтез надежных организмов из ненадежных компонент.  

В концепции вероятностной логики, сформулированной Фон Нейманом 21 ], вероятность появления события рассматривается как вероятность истинности функции алгебры логики. Как показывает Д. А. Поспелов 18 ], это положение вытекает из следующих рассуждений.  

С позиции вероятностной логики, понятие риск в классическом определении характеризуется сочетанием вероятностей: вероятностью возникновения неблагоприятного воздействия; вероятностью того, что возникает неблагоприятное воздействие именно данного типа и масштаба; вероятностью того, что именно данный тип воздействия вызывает определенную величину отклонений состояния субъекта от его динамического равновесия.  

Одним из преимуществ вероятностной логики является использование признаков с малой вероятностью, каждый из которых, взятый в отдельности, не решает вопроса о диагнозе.  


Эти критерии аналогичны порогам в вероятностной логике и так же подбираются машиной (процесс самообучения) из условия максимального качества.  

Близки к этому методу исследования по вероятностной логике , где развиваются частотная концепция интерпретации вероятности и концепция индуктивной вероятности. Основной идеей такого направления является распространение вероятностной схемы на процедуры индуктивного характера.  

Таким образом, детерминистская логика установления диагноза является частным случаем вероятностной логики. Формула Байеса может использоваться и в том случае, когда часть признаков имеет дискретное распределение, а другая часть - непрерывное. Для непрерывного распределения используются плотности распределения. Однако в расчетном плане указанное различие признаков несущественно, если задание непрерывной кривой осуществляется с помощью совокупности дискретных значений.  

Учение о доводах, которое, с иной точки зрения, заключает в себе элементы вероятностной логики, нашло некоторое продолжение в попытках Кондорсе [ 68, с.  



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ