Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

1. Где и отчего происходят землетрясения

2. Сейсмические волны и их измерение

3. Измерение силы и воздействий землетрясений

Шкала магнитуд

Шкалы интенсивности

Шкала Медведева-Шпонхойера-Карника (MSK-64)

4. Происходящее при сильных землетрясениях

5. Причины землетрясений

6. Другие виды землетрясений

Вулканические землетрясения

Техногенные землетрясения

Обвальные землетрясения

Землетрясения искусственного характера

7. Наиболее разрушительные землетрясения

8. О прогнозе землетрясений

9. Типы экологических последствий и землетрясений и их характеристика

Землетрясения это подземные толчки и колебания поверхности Земли, вызванные естественными причинами (главным образом тектоническими процессами) или искусственными процессами (взрывы, заполнение водохранилищ, обрушением подземных полостей горных выработок). Небольшие толчки могут вызывать также подъём лавы при вулканических извержениях.

Где и отчего происходят землетрясения

Ежегодно на всей Земле происходит около миллиона землетрясений, но большинство из них так незначительны, что они остаются незамеченными. Действительно сильные землетрясения, способные вызвать обширные разрушения, случаются на планете примерно раз в две недели. К счастью, большая их часть приходится на дно океанов, и поэтому не сопровождается катастрофическими последствиями (если землетрясение под океаном обходится без цунами).

Землетрясения наиболее известны по тем опустошениям, которые они способны произвести. Разрушения зданий и сооружений вызываются колебаниями почвы или гигантскими приливными волнами (цунами), возникающими при сейсмических смещениях на морском дне.

Международная сеть наблюдений за землетрясениями регистрирует даже самые удаленные и маломощные из них.

Причиной землетрясения является быстрое смещение участка земной коры как целого в момент пластической (хрупкой) деформации упруго напряженных пород в очаге землетрясения. Большинство очагов землетрясений возникает близ поверхности Земли.

Физико-химические процессы, происходящие вну­три Земли, вызывают изменения физического со­стояния Земли, объема и других свойств вещества. Это приводит к накапливанию упругих напряже­ний в какой-либо области земного шара. Когда уп­ругие напряжения превысят предел прочности ве­щества, произойдет разрыв и перемещение больших масс земли, которое будет сопровождаться сотрясе­ниями большой силы. Вот это и вызывает сотрясе­ние Земли — землетрясение.


Землетрясением так же обычно называют любое колебание земной поверхности и недр, какими бы причинами оно не вызывалось - эндогенными или антропогенными и какова бы ни была его интенсивность.

Землетрясения происходят на Земле не повсеме­стно. Они концентрируются в сравнительно узких поясах, приуроченных в основном к высоким горам или глубоким океаническим желобам. Первый из них — Тихоокеанский — обрамляет Тихий океан;

второй — Средиземнотрансазиатский — простирает­ся от середины Атлантического океана через бас­сейн Средиземного моря, Гималаи, Восточную Азию вплоть до Тихого океана; наконец, Атланто-арктичёский пояс захватывает срединный Атлан­тический подводный хребет, Исландию, остров Ян-Майен и подводный хребет Ломоносова в Арктике и т. д.

Землетрясения происходят также в зоне афри­канских и азиатских впадин, таких, как Красное море, озера Танганьика и Ньяса в Африке, Иссык-Куль и Байкал в Азии.

Дело в том, что высочайшие горы или глубокие океанические желоба в геологическом масштабе яв­ляются молодыми образованьями, находящимися в процессе формирования. Земная кора в таких областях подвижна. Подавляющая часть землетрясений связана с процессами горообразования. Такие зем­летрясения называют тектоническими. Ученые со­ставили специальную карту, на которой показано, какой силы землетрясения бывают или могут быть в разных районах нашей страны: в Карпатах, в Крыму, на Кавказе и в Закавказье, в горах Пами­ра, Копет-Дага, Тянь-Шаня, Западной и Восточной Сибири, Прибайкалье, на Камчатке, Курильских островах и в Арктике .


Бывают еще и вулканические землетрясения. Лава и раскаленные газы, бурлящие в недрах вул­канов, давят на верхние слои Земли, как пары ки­пящей воды на крышку чайника. Вулканические землетрясения довольно слабы, но продолжаются долго: недели и даже месяцы. Замечены случаи, когда они возникают до извержения вулканов и служат предвестниками катастрофы.

Сотрясения земли могут быть также вызваны об­валами и большими оползнями. Это местные об­вальные землетрясения.

Как правило, сильные землетрясения сопровож­даются повторными толчками, мощность которых постепенно уменьшается.

При тектонических землетрясениях происходят разрывы или перемещения горных пород в каком-нибудь месте в глубине Земли, называемом очагом землетрясения или гипоцентром. Глубина его обычно достигает нескольких десятков километров, а в отдельных случаях и сотен километров. Уча­сток Земли, расположенный над очагом, где сила подземных толчков достигает наибольшей величи­ны, называется эпицентром.

Иногда нарушения в земной коре — трещины, сбросы — достигают поверхности Земли. В таких случаях мосты, дороги, сооружения оказываются разорванными и разрушенными. При землетрясении в Калифорнии в 1906 г. образовалась трещина про­тяженностью в 450 км. Участки дороги около тре­щины сместились на 5—6 м. Во время Гобийского землетрясения (Монголия) 4 декабря 1957 г. воз­никли трещины общей протяженностью 250 км. Вдоль них образовались уступы до 10 м. Бывает, что после землетрясения большие участки земли опу­скаются и заливаются водой, а в местах, где уступы пересекают реки, появляются водопады.

В мае 1960 г. на Тихоокеанском побережье Юж­ной Америки, в Республика Чили, произошло несколько очень сильных и много слабых землетрясений. Самое сильное из них, в 11—12 баллов, наблюдалось 22 мая: в течение 1—10 секунд было израсходова­но колоссальное количество энергии, таившейся в недрах Земли. Такой запас энергия Днепрогэс мог­ла бы выработать лишь за много лет.

Землетрясение произвело тяжелые разрушения на большой территории. Пострадало более полови­ны провинций Республика Чили , погибло не менее 10 тыс. чело­век, и более 2 млн. осталось без крова. Разрушения охватили Тихоокеанское побережье на протяжении более 1000 км. Были разрушены крупные города — Вальдивия, Пуэрто-Монт и др. В результате чилий­ских землетрясений начали действовать четырнад­цать вулканов.

Когда очаг землетрясения находится под мор­ским дном, на море могут возникнуть огромные волны — цунами, которые иногда приносят разру­шений больше, чем само землетрясение. Волны, вы­званные 22 мая 1960 г. чилийским землетрясением, распространились по Тихому океану и достигли че­рез сутки противоположных его берегов. В Японии высота их достигла 10 м. Прибрежная полоса была затоплена. Суда, находившиеся у берегов, были вы­брошены на сушу, а часть построек унесена в океан.

Крупная катастрофа, постигшая человечество, случилась также 28 марта 1964 г. у побережья по­луострова Аляска. Это сильнейшее землетрясение разрушило г. Анкоридж, расположенный в 100 км от эпицентра землетрясения. Почва была вспахана серией взрывов и оползней. Крупные разрывы и пе­ремещения по ним блоков земной коры дна залива вызвали огромные морские волны, достигающие у побережья США 9—10 м высоты. Эти волны со ско­ростью реактивного самолета прошли вдоль побе­режья Канады и США , сметая все на своем пути.


Как же часто на Земле происходят землетрясе­ния? Современные точные приборы фиксируют ежегодно более 100 тыс. землетрясений. Но люди ощущают около 10 тыс. землетрясений. Из них примерно 100 бывают разрушительными.

Оказывается, что сравнительно слабые землетря­сения излучают энергию упругих колебаний, рав­ную 1012 эрг, а самые сильные — до 10" эрг. При таком большом диапазоне практически удобнее пользоваться не величиной" энергии, а ее логариф­мом. На этом основана шкала, в которой энергети­ческий уровень самого слабого землетрясения (1012 эрг) принимают за ноль, а примерно в 100 раз более сильному соответствует единица; еще в 100 раз большему (в 10 000 раз большему по энергии, чем нулевое) соответствуют две единицы шкалы и т. д. Число в такой шкале называют магнитудой землетрясения и обозначают буквой М.

Таким образом, магнитуда землетрясения харак­теризует количество упругой энергии колебаний, выделяемых во все стороны очагом землетрясения. Эта величина" не зависит ни от глубины очага под земной поверхностью, ни от расстояния до пункта наблюдений. Например, магнитуда (М) Чилийского землетрясения 22 мая 1960 г. близка к 8,5, а Таш­кентского землетрясения 26 апреля 1966 г. — к 5,3.

Масштаб землетрясения и степень его воздействия на людей и природную среду (а также на рукотворные сооружения) можно определять разными показателями, а именно: величиной энергии, выделенной в очаге - магнитудой, силой колебаний и их воздействий на поверхности - интенсивностью в баллах, ускорениями, амплитудой колебаний, а также ущербом - социальным (людские потери) и материальным (экономические потери).


Максимально зарегистрированная магнитуда достигала значения М-8,9. Естественно, что высокоамплетудные землетрясения происходят очень редко -в отличии от средне- и маломагнитудных. Средняя частота землетрясений на земном шаре составляет:

Сила сотрясения, или сила проявления землетря­сения на земной поверхности, определяется балла­ми. Наиболее распространенной является 12-балль­ная шкала. Переход от неразрушительных к разру­шительным сотрясениям соответствует 7 баллам.


Сила проявления землетрясения на поверхности Земли в большей степени зависит от глубины оча­га: чем ближе очаг к поверхности Земли, тем сила землетрясения в эпицентре больше. Так, югослав­ское землетрясение в Скопле 26 июля 1963 г. с маг-нитудой на три-четыре единицы меньше, чем у чи­лийского землетрясения (энергия в сотни тысяч раз меньше), но с малой глубиной очага вызвало ката­строфические последствия. В городе 1000 жителей было убито и более 1/2 зданий разрушено. Разруше­ние на поверхности Земли зависит помимо энергии, выделившейся при.землетрясении, и глубины очага еще от качества грунтов. Наибольшие разрушения происходят на рыхлых, сырых и неустойчивых грунтах. Имеет значение и качество наземных по­строек.

Сейсмические волны и их измерение


Одним из страшных и непредсказуемых природных явлений, происходящих на планете Земля, является землетрясение. Разрушительная сила этой земной катастрофы может достигать колоссальных размеров и бороться с ней не под силу человечеству. По причине того, что землетрясения или подземные толчки происходят в результате внезапных и скоротечных изменений в самых недрах планеты, предупредить их возникновения в настоящее время практически нереально. А порой бывает также достаточно трудно предсказать где, когда и с какой силой будут происходить подземные толчки. Поэтому для того, чтобы попытаться спасти себя и жизнь своих близких во время этой природной катастрофы очень важно знать, что нужно делать при землетрясении и уметь оказывать первую помощь.

На планете Земля каждый год происходит огромное количество землетрясений. Но по причине того, что большая часть из них имеет очень маленькую силу воздействия или происходит на самом дне океанов, многие из подземных толчков нас совершенно не затрагивают и мы абсолютно не осведомлены об их возникновениях, а некоторые даже и не подозревают об их существовании. Заметные разрушения могут вызвать лишь сильные землетрясения, или возникшие в океане по их причине цунами.

По причине того, что во время землетрясений его энергия вырабатывается во множестве разных форм (магнитной, электрической, механической), измерить силу его действия с абсолютной точностью невозможно. Самая большая часть разрушительной силы этого природного явления приходится на эпицентр его возникновения, а остальная энергия переходит в волны, сила воздействия которых уменьшается с увеличением расстояния.

Силу землетрясения принято определять посредством таких понятий как интенсивность, магнитуда и энергетический класс. Наиболее точным считается измерение амплитуды землетрясения, то есть величины возникающих колебаний непосредственно в самом эпицентре катастрофы, а более частым в употреблении в обычной жизни является понятие интенсивности или балльности, измеряющееся в баллах, так как именно оно позволяет охарактеризовать силу проявления землетрясения на поверхности земной коры. Чем сильнее землетрясение и ближе его эпицентр, тем больше интенсивность. Рассмотрим, какое воздействие оказывает эта природная катастрофа в зависимости от количества баллов ее интенсивности:

  • От 1 до 2 баллов – незначительной силы толчки, которые можно определить лишь с помощью специальных приборов. Землетрясения в 2 бала также иногда можно определить и человеку, если в этот момент он находится в неподвижном состоянии.
  • От 3 до 4 баллов – толчки ощущаются более сильно в высотных зданиях, возможны раскачивания люстры, небольшие смешения предметов и ощущение легкого головокружения.
  • От 5 до 7 баллов – толчки начинают достаточно сильно ощущаться на земле, возможны незначительные разрушения зданий, начинают, например, появляться трещины на стенах, ломаться окна, крошится штукатурка.
  • 8 баллов – землетрясение вызывает возникновение глубоких трещин на домах, земле и даже склонах.
  • 9 баллов – толчки становятся такой силы, что способны разрушить стены домов и даже некоторые подземные коммуникационные сооружения.
  • От 10 до 11 балов – землетрясение такой силы вызывает сильное разрушение многих зданий, мостов, обвалы, оползни.
  • 12 балов – сила разрушения подобной силы толчков способна значительно изменить поверхность земной коры, практически раскрошить здания и даже поменять движение воды в реках.

Сила землетрясения в значительной степени зависит от того насколько близко к поверхности Земли произошли внутренние изменения и подвижки земной коры. Чем ближе очаг, тем большую разрушительную силу приобретает природная катастрофа.

Причины землетрясений

Довольно часто у многих возникает вопрос: «Почему происходят землетрясения?». В древности люди считали, что подобные катастрофы насылаются на них свыше в наказание за плохие деяния. В настоящее время, несмотря на то, что этот вопрос до конца еще не изучен, у ученых имеются некоторые ответы. На самом деле причин появления подобных катастроф достаточно много и все они разделяются на следующие воздействия:

  • Природные. К природным воздействиям относится внутренние изменения планеты Земля, влияние космических бурь, солнца, а также некоторых других явлений Космоса.
  • Искусственные. Искусственным воздействие на побуждения возникновения землетрясения является Человек и его влияние на окружающую среду. Такими действиями могут быть взрывы, раскапывание земных пород для добычи полезных ископаемых и тому подобное.

В зависимости от причины возникновения различаются следующие виды землетрясений:

  • Тектонические землетрясения. Этот вид является наиболее распространенным явление, которое возникает по причине подвижек, разломов и столкновений тектонических плит. Проявляются такие землетрясения по-разному. Это могут быть возникновение огромных трещин на поверхности земли, различных обвалов и оползней или же при малой силе землетрясения могут совсем никак не выявить себя.
  • Обвальные землетрясения. Эти землетрясения возникают по причине воздействия на земную кору оползней и обвалов. Подобные явления чаще всего возникают по причине возникновения пустот под землей и внутри гор. Чаще всего обвальные землетрясения не имеют большой силы.
  • Вулканические землетрясения вызываются вследствие извержения вулкана. Их особенностью является то, что они не вызывают никаких существенных разрушений и могут повторяться некоторое количество раз.
  • Искусственные землетрясения. Этот вид возникает в результате большого количества одновременных взрывов, ядерных взрывов, а также подземных испытаниях различного вида оружия.
  • Техногенные землетрясения возникают при непосредственном воздействии человека на окружающую среду. Оно может возникнуть в результате искусственного изменения ландшафта при строении дамб или новых сооружений, поисках нефтяных скоплений, добыче различных видов ископаемых, при разрушении человеком гор и равнин.

По результатам многочисленным наблюдений перед возникновением многих землетрясений происходят следующие природные явления:

  • Большие и продолжительные ливневые дожди.
  • Появление в воздухе переизбытка таких газов, как урановые соединения, радона, гелия, аргона.
  • Сильное беспокойство и необычное поведение домашних и диких животных, считается, например, что .
  • Неожиданно возникшее свечение в воздухе.

Экологические последствия землетрясений

В зависимости от силы землетрясения, близости эпицентра, а также места его возникновения проявляется различная степень последствий этого явления.

Катастрофы с более высокой интенсивность в значительной степени влияют на экологию окружающей среды.

  • Самыми частыми экологическими последствиями в результате землетрясений являются возникновения таких природных процессов как осыпи, обвалы, сели, разрушения земной коры и даже наводнения. При любом даже незначительном изменении привычного ландшафта в любом случае возникает большой стресс для обитающих в этой местности живых организмов. Так, например, большие оползневые завалы портят состав почвы, затопления вызванным землетрясением цунами способно надолго убить жизнь организмов в местности.
  • В случае глубоких разломов из недр земли в атмосферу начинают поступать различные тяжелые металлы, негативно воздействующие на живые организмы.
  • Одними из самых опасных влияний землетрясения является провоцирование техногенных катастроф. В том случае если оно возникло на местности, где находились различные сооружения, созданных для создания производственных технологий, таких, например, как нефтеперерабатывающее или фармацевтическое предприятия. Вследствие нарушений таких зданий практически всегда возникает сильное загрязнение окружающей среды.
  • В случае если землетрясение возникло в местности, где хранились отходы, все ядовитые и небезопасные вещества могут разнестись на большое расстояние вокруг местности, что также губительно для хорошего экологического состояния.
  • Очень опасны также разрушения нефтяных и газовых труб, вызывающих большое скопление вредных веществ в воздух.
  • Разрушение в результате землетрясения таких объектов энергетики как, например, ТЭС и ГРЭС способны вызвать пожары огромных разрушительных масштабов, способных разрушить местность на много километров вокруг. Наиболее страшные последствия землетрясений возникают при разрушении атомной электростанции.

Территория возникновения землетрясений не имеет равномерного распределения. Основной точкой или сейсмическим поясом, где часто происходят землетрясения, находится в Тихом океане. Этот пояс захватывает Индонезию, западную часть побережья Центральной и Южной Америки, Японию, Исландию, Камчатку, Гавайи, Филиппины, Курилы и Аляску.

На втором месте по сейсмической активности находятся районы Евроазиатского пояса. В него включены такие горные массивы как Пиренеи, Кавказ, Тибет, Апеннины, Гималаи, Алтай, Памир и Балканы.

Большое количество землетрясений происходит в местах разломов и где существует наибольшая вероятность столкновения плит, а также в местах, где вулканы находятся в активном состоянии.

За последние десять лет самыми разрушительными и мощными по силе воздействия стали катастрофы, произошедшие в следующих странах:

  • Индия – более 20 тысяч жертв.
  • Иран – снесен с лица земли целый город и погибло около 30 тысяч человек.
  • О. Суматра – жертвами стали более 200 тысяч человек.
  • Пакистан – более 70 тысяч погибших.
  • Китай – погибли более 80 тысяч
  • Гаити – жертвами стали более 200 тысяч людей.
  • Япония – землетрясения вызвало гибель около 30 тысяч человек и вызвало разрушение АЭС, которое привело к вредоносным выбросам в атмосферу.

Где происходят землетрясения в России

В России также имеется достаточно большое количество мест, где периодически возникают землетрясения. Основными сейсмически активными точками здесь являются такие горные местности, как Камчатка, Восточная Сибирь, Кавказ, Алтай. Также довольно часто подобные катастрофы достаточно больших масштабов были замечены на Сахалине и Курильских островах, где по причине землетрясений также часто образуются цунами.

Наиболее разрушительным и страшным по масштабам жертв и разрушений за последние годы в России стало землетрясение, произошедшее на острове Сахалин в 1995 году. Интенсивность этой катастрофы составила почти 8 балов, что способствовало разрушению большей части города Нефтегорск, в которой оно произошло и гибели более двух тысяч человек.

Каждому человеку очень важно знать правила поведения при землетрясении для того, чтобы не растеряться в самый ответственный момент и постараться по возможности оказать себе и окружающим максимально возможную помощь. В первую очередь это касается тех людей, которые постоянно проживают или временно находятся в сейсмически опасных зонах, которые должны всегда быть наготове.

Для того чтобы землетрясение не застало врасплох все важные документы и сбережения, аптечку, а также фонарик необходимо хранить в одном месте, всегда держать в голове примерный план действий при нахождении в любом из возможных мест, где вы могли бы быть. Также не стоит хранить на верхних полках и шкафах тяжелые, острые и ядросодержащие вещества.

В том случае если поступило сообщение о сильном землетрясении и необходимости эвакуации в том случае, если вы находитесь в не дома и у вас есть небольшой запас времени нужно немедленно направиться в свой дом, собрать все необходимые документы и вещи, выключить воду, свет и газ и закрыть двери. После чего необходимо в кратчайшие сроки покинуть населенный пункт и направиться в более безопасное место.

Во время землетрясения очень важно взять себя в руки, подавить в себе панику и растерянность и постараться действовать рационально, максимально быстро и продуктивно, для того чтобы иметь больший шанс спасения от повреждений. В первую очередь, если вы находитесь в помещении необходимо постараться как можно скорее выбраться из помещения, захватив при этом и по возможности выйти на более открытую местность, где нет поблизости электричества, зданий и деревьев. Если вы выходите с более высоких этажей, то лучше это делать по лестнице, а не с помощью лифта.

В том случае, если помещение не удается покинуть, то необходимо найти в нем наиболее безопасное место. Это может быть место около несущей стены, и которое не перегружено предметами, дверной проем или же под крепким столом или кроватью, которые будут способны укрыть от падающих предметов. Ни в коем случае нельзя стоять около окон, полок и тяжелых предметов, также не стоит пользоваться газом и электричеством.

Если с вами рядом находятся дети их в первую очередь необходимо постараться успокоить, найти им укромное место или же, если вы находитесь на открытой местности ни в коем случае не упускать их из вида и держать рядом с собой.

Если землетрясение застало вас в машине также необходимо постараться найти более открытую местность, не загроможденную столбами, различными насаждениями и щитами, предназначенными для размещения рекламы, остановить машину, открыть дверь и оставаться в ней пока не закончатся толчки.

Землетрясение – это резкие импульсные сотрясения участков земной поверхности. Эти сотрясения могут быть вызваны разными причинами, что позволяет по происхождению землетрясения разделять на следующие главные группы:

  • тектонические, обусловленные высвобождением энергии, возникающей вследствие деформаций толщ горных пород;
  • вулканические, связанные с движением магмы, взрывом и обрушением вулканических аппаратов;
  • денудационные, связанные с поверхностными процессами (крупными обвалами, обрушением сводов карстовых полостей);
  • техногенные, связанные с деятельностью человека (добыча нефти и газа, ядерные взрывы и пр.).

Наиболее частыми и мощными являются землетрясения тектонического происхождения. Напряжения, вызванные тектоническими силами, накапливаются в течение некоторого времени. Затем, когда превышается предел прочности, происходит разрыв горных пород, сопровождающийся выделением энергии и деформацией в виде упругих колебаний (сейсмических волн). Область внутри Земли, где происходит образование разломов и возникновение сейсмических волн, называют очагом землетрясения ; очаг является областью зарождения землетрясения. Как правило, главному сейсмическому удару предшествуют предварительные более слабые точки – форшоки (англ. «fore» - впереди + «shock» - удар, толчок ), связанные с началом образовании разломов. Затем происходит главный сейсмический удар и следующие за ним афтершоки. Афтершоки – это подземные толчки, следующие за главным толчком из одной с ним очаговой области. Число афтершоков и продолжительность их возникновения возрастает с ростом энергии землетрясения, уменьшением глубины его очага и может достигать нескольких тысяч. Их образование связано с возникновением новых разломов в очаге. Таким образом, землетрясение обычно проявляется в виде группы сейсмических толчков, состоящей из форшоков, главного толчок (сильнейшего землетрясение в группе) и афтерошоков. Сила землетрясения определяется объёмом его очага: чем больше объём очага, тем сильнее землетрясение.

Условный центр очага землетрясения называют гипоцентром , или фокусом землетрясения. Его объём можно очертить по расположению гипоцентров афтершоков. Проекция гипоцентра на поверхность называется эпицентром землетрясения. Вблизи эпицентра колебания земной поверхности и связанные с ними разрушения проявляются с наибольшей силой. Территория, где землетрясение проявилось с максимальной силой, называется плейстосейстовой областью . По мере удаления от эпицентра интенсивность землетрясения и степень связанных с ним разрушений уменьшается. Условные линии, соединяющие территории с одинаковой интенсивностью землетрясения называются изосейстами . От очага землетрясения изосейсты вследствие разной плотности и типа грунтов расходятся в виде эллипсов или изогнутых линий.

По глубине гипоцентров землетрясения делятся на мелкофокусные (0-70 км от поверхности), среднефокуные (70-300 км) и глубокофокусные (300-700 км). Основанная часть землетрясений зарождается в очагах на глубине 10-30 км, т.е. относится к мелкофокусным.

Регистрация и измерение интенсивности землетрясений

Ежегодно на Земле регистрируется несколько сотен тысяч землетрясений, часть из них оказываются разрушительными, часть вообще не ощущается людьми. Интенсивность землетрясений может быть оценена с двух позиций: 1) внешнего эффекта землетрясения и 2) измерения физического параметра землетрясения – магнитуды.

Определение внешнего эффекта землетрясения основано на определении его интенсивности , представляющей собой меру величины сотрясения грунта. Она определяется степенью разрушения построек, характером изменения земной поверхности и ощущениями, которые испытывают люди во время землетрясений. Интенсивность землетрясений измеряется в баллах.

Разработано несколько шкал для определения интенсивности землетрясений. Первая из них была предложена в 1883-1884 гг. М. Росси и Ф. Форелем, интенсивность в соответствии с этой шкалой измерялась в интервале от 1 до 10 баллов. Позднее, в 1902 г. в США была разработана более совершенная 12-балльная шкала, получившая название шкалы Меркалли (по имени итальянского вулканолога). Этой шкалой, несколько видоизменённой, и в настоящее время широко пользуются сейсмологи США и ряда других стран. В нашей стране и некоторых европейских странах используется 12-балльная международная шкала интенсивности землетрясений (MSK-64), получившая название по первым буквам её авторов (Медведев –Шионхойер - Карник).

Шкала MSK-64 (с упрощениями)
Баллы Критерии
ОДИН БАЛЛ Людьми такое землетрясение не ощущается, за исключением единичных наблюдателей, находящихся в особо чувствительных местах и занимающих определенные положения. Толчки регистрируются только специальными сейсмографами.
ДВА БАЛЛА Землетрясение очень слабое. Колебание почвы ощущается немногими людьми, находящимися в покое, главным образом в самых верхних этажах зданий, расположенных в непосредственной близости от эпицентра.
ТРИ БАЛЛА Землетрясение слабое. Колебания ощущаются в помещениях, главным образом в верхних этажах высотных зданий. Во время этого землетрясения раскачиваются подвешенные предметы, особенно люстры, скрипят и приходят в движение раскрытые двери. Стоящие автомобили начинают слегка раскачиваться на рессорах. Некоторые люди способны оценить длительность сотрясения.
ЧЕТЫРЕ БАЛЛА Умеренное землетрясение. Оно ощущается многими людьми и особенно теми, кто находится в помещении. Лишь немногие люди могут почувствовать такое землетрясение на открытом воздухе, и только те, кто в данное время находится в покое. Некоторые люди ночью от такого землетрясения пробуждаются. В момент землетрясения раскачиваются подвешенные предметы, дребезжат стекла, хлопают двери, звенит посуда, трещат деревянные стены, карнизы и перекрытия. Заметно покачиваются на рессорах стоящие автомашины.
ПЯТЬ БАЛЛОВ Ощутимое землетрясение. Оно чувствуется всеми людьми, где бы они ни находились. Просыпаются все спящие. Двери раскачиваются на петлях и открываются самопроизвольно, стучат ставни, захлопываются и открываются окна. Жидкость в сосудах раскачивается и иногда переливается через край. Бьется часть посуды, трескаются оконные стекла, местами в штукатурке появляются трещины, опрокидывается мебель. Маятниковые часы останавливаются. Иногда раскачиваются телеграфные столбы, опорные мачты, деревья и все высокие предметы.
ШЕСТЬ БАЛЛОВ Сильное землетрясение. Ощущается всеми людьми. Многие люди в испуге покидают помещение. В момент колебания почвы и после них походка становится неустойчивой. Бьются окна и стеклянная посуда. Отдельные предметы падают со стола. Падают картины. Приходит в движение и опрокидывается мебель. Появляются трещины на стенах в кирпичной кладке. Заметно сотрясаются деревья и кусты.
СЕМЬ БАЛЛОВ Очень сильное землетрясение. Люди с трудом удерживаются на ногах. В испуге инстинктивно выбегают из помещений. Дрожат подвешенные предметы. Ломается мебель. Многие здания получают сильные повреждения. Печные трубы обламываются на уровне крыш. Обваливается штукатурка, плохо уложенные кирпичи, камни, черепица, карнизы и неукрепленные специально парапеты. Появляются значительные трещины в грунте. Происходят оползни и обвалы на каменистых и глинистых склонах. Самопроизвольно звонят колокола. В реках и открытых водоемах мутнеет вода. Из бассейнов вода выплескивается. Повреждаются бетонные оросительные каналы.
ВОСЕМЬ БАЛЛОВ Разрушительное землетрясение. Типовые здания получают значительные повреждения. Иногда частично разрушаются. Ветхие постройки разрушаются. Происходит отрыв панелей от каркасов. Покачиваются и падают печные и фабричные трубы, памятники, башни, колонны, водонапорные башни. Ломаются сваи. Обламываются ветви на деревьях, возникают трещины во влажном грунте и на крутых склонах.
ДЕВЯТЬ БАЛЛОВ Опустошительное землетрясение. От действия такого землетрясения возникает паника. Дома разрушаются. Серьезно повреждаются плотины и борта водохранилищ. Рвутся подземные трубопроводы. На земной поверхности появляются значительные трещины.
ДЕСЯТЬ БАЛЛОВ Уничтожающее землетрясение. Большая часть построек разрушается до основания. Обрушиваются некоторые хорошо построенные деревянные здания и мосты. Серьезные повреждения получают дамбы, насыпи и плотины. На земной поверхности появляются многочисленные трещины, некоторые из них имеют ширину около 1 м. Возникают большие провалы и крупные оползни. Вода выплескивается из каналов, русел рек и из озер. Приходят в движение песчаные и глинистые грунты на пляжах и низменных участках. Слегка изгибаются рельсы на железных дорогах. Ломаются крупные ветви и стволы деревьев.
ОДИННАДЦАТЬ БАЛЛОВ Катастрофическое землетрясение. Сохраняются только немногие, особо прочные каменные здания. Разрушаются плотины, насыпи, мосты. На поверхности земли появляются широкие трещины, уходящие глубоко в недра. Подземные трубопроводы полностью выходят из строя. Сильно вспучиваются рельсы на железных дорогах. На склонах возникают крупные оползни.
ДВЕНАДЦАТЬ БАЛЛОВ Сильное катастрофическое землетрясение. Полное разрушение зданий и сооружений. До неузнаваемости изменяется ландшафт, смещаются скальные массивы, оползают склоны, возникают крупные провалы. Поверхность земли становится волнообразной. Образуются водопады, возникают новые озера, изменяются русла рек. Растительность и животные погибают под обвалами и осыпями. Обломки камней и предметов взметаются высоко в воздух.

В соответствии с этой шкалой землетрясения подразделяются на слабые - от 1 до 4 баллов, сильные - от 5 до 7 баллов и сильнейшие - более 8 баллов.

Оценка интенсивности землетрясений, хотя и опирается на качественную оценку эффекта землетрясения (воздействие землетрясения на поверхность), но не позволяет проводить математически точное определение параметров землетрясения.

В 1935 г. американским сейсмологом Ч. Рихтером была предложена более объективная шкала, основанная на измерении магнитуды (эта шкала впоследствии стала широко известна как шкала Рихтера). Магнитуда (от лат. «magnitudo» – величина ), согласно определению Ч. Рихтера и Б. Гуттенберга, это величина, представляющая собой десятичный логарифм максимальной амплитуды сейсмической волны (в тысячных долях миллиметра), записанной стандартным сейсмографом на расстоянии 100 км от эпицентра землетрясения .

Хотя в этом определении не уточняется, какие из существующих волн надо принимать в расчет, стало общепринятым измерять максимальную амплитуду продольных волн (для землетрясений, очаг которых располагается вблизи поверхности, обычно измеряется амплитуда поверхностных волн). В целом, магнитуда характеризует степень смещения частиц грунта при землетрясениях: чем больше амплитуда, тем значительнее смещение частиц.

Шкала Рихтера теоретически не имеет верхнего предела. Чувствительные приборы регистрируют толчки с магнитудой 1,2, в то время как люди начинают ощущать толчки только с магнитудой 3 или 4. Наиболее сильные землетрясения, происшедшие в историческое время, достигали магнитуды 8,9 (печально знаменитое землетрясение в Лиссабоне в 1755 г.).

Между интенсивностью землетрясения в эпицентре (I 0), которая выражается в баллах, и величиной магнитуды (М) существует зависимость, описываемая формулами

I 0 = 1,7М-2,2 и М = 0,6I 0 +1,2 .

Соотношение между балльностью и магнитудой зависит от расстояния между очагом и точкой регистрации на поверхности земли. Чем меньше глубина очага, тем больше интенсивность сотрясения на поверхности при одной и той же магнитуде.

Следовательно, землетрясения с одинаковой магнитудой могут вызывать разные разрушения на поверхности в зависимости от глубины очага.

Регистрация землетрясений проводится на сейсмических станциях с помощью специальных приборов – сейсмографов, записывающих даже малейшие колебания грунта. Запись колебаний называют сейсмограммой. Сейсмограммы должны регистрировать колебания грунта в двух взаимоперпендикулярных направлениях в горизонтальной плоскости и колебания в вертикальной плоскости, для чего в состав сейсмографов включены три записывающих устройства (сейсмометра). На основании определения разницы во времени регистрации разных типов сейсмических волн, и зная скорость их распространения, можно определить положение гипоцентра землетрясения. Точность таких определений достаточно высока, особенно с учётом того, что к сегодняшнему дню действует развитая международная сеть сейсмических станций.

Для характеристики землетрясений важное значение имеют также их энергия и ускорение при сотрясении грунта.

Энергия, выделяемая при землетрясении, может быть рассчитана исходя из значения магнитуды по формуле

log Е = 11,5 M , где Е – энергия, М – магнитуда.

Величина ускорения показывает, с какой скоростью происходит сотрясение грунта. Ускорения, получаемые грунтом, передаются сооружениям, которые начинают раскачиваться и разрушаться. Для измерения ускорения пользуются показаниями специальных приборов - акселерографов, которыми оснащены современные сейсмографы. Ускорения в горизонтальном направлении всегда больше, чем в вертикальном. Так, максимально высокие из зарегистрированных горизонтальных ускорений составляют 1,15g, а максимально высокие вертикальные - до 0,7g. Именно поэтому наиболее опасными считаются горизонтальные толчки.

Размещение сейсмически активных зон

Подавляющее большинство землетрясений приурочены к тектонически активным зонам земной коры, связанным с границами литосферных плит. Так высокосейсмичным районом является обрамление Тихого океана, где океаническая литосферная плита поддвигается под континентальные или более древние океанические плиты (процесс поддвига океанической плиты называют субдукцией). Зоны поддвига плиты и её погружения в мантию трассируется положением очагов землетрясений, фиксируемых до поверхности нижней мантии (граница 670 км, связанная с возрастанием плотности вещества) и иногда глубже. Эти зоны получили название сейсмофокальных зон Беньофа. Ещё одна область активной сейсмичности связана с Альпийско-Гималайским поясом, протягивающимся от Гибралтара до Бирмы. Этот грандиозный складчатый пояс образован в результате столкновения континентальных литосферных плит. В пределах этого пояса очаги землетрясений приурочены главным образом к земной коре (глубинам до 40-50 км) и не образуют выраженных сейсофокальных зон. Их образование связано с процессами скучивания и раскалывания на надвигающиеся друг на друга пластины толщ континентальной литосферы. Очаги землетрясений приурочены и к зонам раздвижения и раскалывания плит. Процесс раздвижения литосферных, сопровождающийся формированием новой океанической коры за счёт мантийных расплавов, активно протекает в зонах срединно-океанических хребтов. Растяжение континентальных литосферных плит (происходящее, например, в Восточной Африке или в районе озера Байкал).

Ежегодно на нашей планете происходят сотни тысяч землетрясений. Большинство из них настолько малы и незначительны, что зафиксировать их способны лишь специальные датчики. Но, бывают и более серьёзные колебания: два раза в месяц земная кора содрогается достаточно сильно для того, чтобы разрушить всё вокруг.

Поскольку большинство толчков подобной силы происходят на дне Мирового океана, если их не сопровождает цунами, люди о них даже не подозревают. А вот когда содрогается суша, стихия бывает до того разрушительна, что счёт жертв идёт на тысячи, как это случилось в XVI веке в Китае (во время подземных толчков магнитудой 8,1 погибло более 830 тыс. людей).

Землетрясением называют подземные толчки и колебания земной коры, вызванные природными или искусственно созданными причинами (движением литосферных плит, извержением вулканов, взрывами). Последствия толчков большой интенсивности нередко бывают катастрофичны, по количеству жертв уступая лишь тайфунам.

К сожалению, на данный момент учёные не настолько хорошо изучили процессы, что происходят в недрах нашей планеты, а потому прогноз землетрясений дают довольной приблизительный и неточный. Среди причин возникновений землетрясений специалисты выделяют тектонические, вулканические, обвальные, искусственные и техногенные колебания земной коры.

Тектонические

Большинство зафиксированных в мире землетрясений возникло в результате движений тектонических плит, когда происходит резкое смещение горных пород. Это может быть как столкновение друг с другом, так и опускание более тонкой плиты под другую.

Хотя этот сдвиг обычно невелик, и составляет лишь несколько сантиметров, в движение приходят расположенные над эпицентром горы, которые выделяют огромной силы энергию. В результате на земной поверхности образовываются трещины, по краям которых начинают смещаться огромные участки земли вместе со всем, что на ней находится – полями, домами, людьми.

Вулканические

А вот вулканические колебания хоть и слабы, но продолжаются долго. Обычно особой опасности они не представляют, но катастрофические последствия зафиксированы всё же были. В результате мощнейшего извержения вулкана Кракатау в конце XIX ст. взрывом была уничтожена половина горы, а последующие за этим подземные толчки были такой силы, что раскололи остров на три части, погрузив две трети в пучину. Поднявшееся после этого цунами уничтожило абсолютно всех, кто сумел до этого выжить и не успел покинуть опасную территорию.



Обвальные

Нельзя не упомянуть об обвалах и больших оползнях. Обычно сотрясения эти несильны, но в некоторых случаях их последствия бывают катастрофичны. Так, произошло однажды в Перу, когда огромная лавина, вызвав землетрясение, на скорости 400 км/ч сошла с горы Аскаран, и, сровняв с землёй не одно поселение, погубила более восемнадцати тысяч человек.

Техногенные

В некоторых случаях причины и последствия землетрясений нередко связаны с человеческой деятельностью. Учёными было зафиксировано увеличение количества подземных толчков в районах крупных водохранилищ. Связано это с тем, что собранная масса воды начинает давить на ниже находящуюся земную кору, а проникающая сквозь грунт вода – разрушать её. Кроме того, увеличение сейсмической активности было замечено в местах добычи нефти и газа, а также в районе шахт и карьеров.

Искусственные

Землетрясения можно вызвать и искусственным путём. Например, после того как КНДР испытывало новое ядерное оружие, во многих местах планеты датчики зафиксировали землетрясения умеренной силы.

Подводное землетрясение возникает во время столкновения тектонических плит на океаническом дне или недалеко от побережья. Если очаг расположен неглубоко, а магнитуда равняется 7 баллам, подводное землетрясение чрезвычайно опасно, поскольку вызывает цунами. Во время содрогания морской коры одна часть дна опускается, другая – приподнимается, в результате чего вода в попытках вернуться к первоначальному положению, начинает двигаться по вертикали, порождая серию огромных волн, идущих по направлению к побережью.


Подобное землетрясение вместе с цунами нередко могут иметь катастрофические последствия. Например, одно из самых сильных моретрясений произошло несколько лет назад в Индийском океане: в результате подводных толчков поднялось большое цунами и, обрушившись на близлежащие побережья, привело к гибели более двухсот тысяч человек.

Начало толчков

Очаг землетрясения являет собой разрыв, после образования которого земная поверхность мгновенно смещается. Надо заметить, разрыв этот происходит не сразу. Сперва плиты наталкиваются друг на друга, в результате чего возникает трение и образуется энергия, которая постепенно начинает накапливаться.

Когда напряжение становится максимальным и начинает превышать силу трения, горные породы разрываются, после чего освобождённая энергия преобразуется в сейсмические волны, двигающиеся со скоростью 8 км/с и вызывающие колебания земли.


Характеристика землетрясений по глубине эпицентра делится на три группы:

  1. Нормальные – эпицентр до 70 км;
  2. Промежуточные – эпицентр до 300 км;
  3. Глубокофокусные – эпицентр на глубине, превышающей 300 км, типичны для Тихоокеанского кольца. Чем глубже эпицентр, тем дальше дойдут порождённые энергией сейсмические волны.

Характеристика

Состоит землетрясение из нескольких этапов. Основному, наиболее сильному толку, предшествуют предупреждающие колебания (форшоки), а после него начинаются афтершоки, последующие сотрясения, причём магнитуда самого сильного афтершока на 1,2 меньше, чем у основного толчка.

Период от начала форшоков до конца афтершоков вполне может длиться несколько лет, как это, например, случилось в конце XIX столетия на острове Лисса в Адриатическом море: длилось оно три года и за это время учёные зафиксировали 86 тысяч толчков.

Что касается длительности основного толчка, то она обычно непродолжительна и редко когда длится более минуты. Например, самый мощный толчок на Гаити, произошедший несколько лет назад, длился сорок секунд – и этого оказалось достаточно, чтобы превратить город Порт-о-Пренс в руины. А вот на Аляске была зафиксирована серия толчков, которые сотрясали землю около семи минут, при этом три из них привели к значительным разрушениям.


Рассчитать, какой именно толчок окажется основным и будет иметь наибольшую магнитуду, крайне сложно, проблематично и стопроцентных способов нет. Поэтому сильные землетрясения нередко застают население врасплох. Так, например, случилось в 2015 году в Непале, в стране, где настолько часто фиксировались несильные сотрясения, что люди попросту не обращали на них особого внимания. Поэтому содрогание почвы магнитудой в 7,9 балла привело к большому числу жертв, а последующие за ним через полчаса и на следующий день более слабые афтершоки с магнитудой 6,6 не улучшили ситуации.

Нередко бывает, что сильнейшие содрогания, происходящие с одной стороны планеты, сотрясают противоположную сторону. Например, землетрясение с магнитудой в 9,3, произошедшее 2004 году в Индийском океане, несколько ослабило возрастающее напряжение в разломе Сан-Андреас, что находится на стыке литосферных плит вдоль побережья Калифорнии. Оно оказалось такой силы, что немного видоизменило вид нашей планеты, сгладив её выпуклость в средней части и сделав более округлой.

Что такое магнитуда

Одним из способов замерить амплитуду колебаний и количество освобождаемой энергии является шкала магнитуд (шкала Рихтера), содержащая условные единицы от 1 до 9,5 (её очень часто путают с двенадцатибалльной шкалой интенсивности, измеряемую в баллах). Увеличение магнитуды землетрясений лишь на одну единицу означает увеличение амплитуды колебаний в десять, а энергии – в тридцать два раза.

Проведённые расчёты показали, что размер эпицентра во время слабых колебаний поверхности как в длину, так и по вертикали измеряется несколькими метрами, когда средней силы – километрами. А вот землетрясения, вызывающие катастрофы, имеют протяжённость до 1 тыс. километров и от точки разрыва уходят на глубину до пятидесяти километров. Таким образом, максимальный зарегистрированный размер эпицентра землетрясений на нашей планете составлял 1000 на 100 км.


Выглядит магнитуда землетрясений (шкала Рихтера) следующим образом:

  • 2 – слабые почти неощутимые колебания;
  • 4 — 5 – хоть толчки слабые, они могут привести к незначительным разрушениям;
  • 6 – средние разрушения;
  • 8,5 – одни из сильнейших зафиксированных землетрясений.
  • Наиболее крупным считается Великое Чилийское землетрясение с магнитудой в 9,5, породившее цунами, которое, преодолев Тихий океан, добралось до Японии, преодолев 17 тыс. километров.

Ориентируясь на магнитуду землетрясений, учёные утверждают, что из десятков тысяч, происходящих на нашей планете колебаний в год, лишь одно имеет магнитуду 8, десять – от 7 до 7,9 и сто – от 6 до 6,9. Нужно учитывать, что если магнитуда землетрясения 7, последствия могут быть катастрофичными.

Шкала интенсивности

Чтобы понять, почему происходят землетрясения, учёными была разработана шкала интенсивности, основанная на таких внешних проявлениях, как воздействие на людей, животных, здания, природу. Чем ближе эпицентр землетрясений к земной поверхности, тем больше интенсивность (эти знания дают возможность дать хотя бы приблизительный прогноз землетрясений).

Например, если магнитуда землетрясения была равна восьми, а эпицентр находился на глубине десяти километров, интенсивность землетрясения составит от одиннадцати до двенадцати баллов. А вот если эпицентр был расположен на глубине пятидесяти километров, интенсивность окажется меньшей и будет измеряться в 9-10 баллов.


Согласно шкале интенсивности, первые разрушения могут произойти уже при шестибалльных толчках, когда появляются тонкие трещины в штукатурке. Землетрясение в одиннадцать баллов считается катастрофическим (поверхность земной коры покрывается трещинами, здания разрушаются). Самые сильные землетрясения, способные значительно изменить вид местности, оцениваются в двенадцать баллов.

Что делать при землетрясениях

По приблизительным подсчётам учёных число людей, которые погибли в мире из-за землетрясений за последние полтысячелетия, превышает пять миллионов человек. Половина из них приходится на Китай: он расположен в зоне сейсмической активности, а на его территории проживает большое число людей (в XVI ст. погибло 830 тыс. человек, в середине прошлого века – 240 тысяч).

Подобные катастрофические последствия можно было предотвратить, если бы защита от землетрясений была хорошо продумана на государственном уровне, а при конструировании зданий учитывалась возможность возникновения сильных подземных толчков: большинство людей погибло именно под обломками. Нередко люди, проживающие или пребывающие в сейсмически активной зоне, не имеют ни малейшего понятия о том, как именно нужно действовать в условиях чрезвычайной ситуации и каким способом можно спасти свою жизнь.

Необходимо знать, что если подземные толчки застали вас в здании, нужно сделать всё возможное, чтобы как можно быстрее выбраться на открытое пространство, при этом лифтами пользоваться категорически нельзя.

Если уйти из здания невозможно, а землетрясение уже началось, покидать его крайне опасно, поэтому нужно встать или в дверном проёме, или в углу возле несущей стены, или залезть под крепкий стол, защитив голову мягкой подушкой от предметов, которые могут упасть сверху. После того как толчки закончатся, здание нужно покинуть.

Если во время начала землетрясений человек оказался на улице, нужно отойти от дома минимум на одну треть от его высоты и, избегая высоких зданий, оград и других построек, двигаться по направлению широких улиц или парков. Также необходимо держаться как можно дальше от оборванных электрических проводов промышленных предприятий, поскольку там могут храниться взрывоопасные материалы или ядовитые вещества.

А вот если первые подземные толчки застали человека, когда тот пребывал в автомобиле или общественном транспорте, нужно срочно покинуть транспортное средство. Если же машина находится на открытой местности, наоборот, остановить машину и переждать землетрясение.

Если же так получилось, что вас полностью завалило обломками, главное, не впадать в панику: человек может продержаться без еды и воды несколько дней и дождаться, пока его найдут. После катастрофических землетрясений работают спасатели со специально обученными собаками, а те способны учуять жизнь среди завалов и подать знак.

Повинны ли водохранилища в землетрясениях?

В августе 1975 г. жители неболь­шого (около 20 тыс. жителей) го­родка Оровилл в Северной Кали­форнии испытали семибалльный толчок. В Калифорнии ежегодно происходит свыше 300 землетря­сений, и Оровиллское землетря­сение не должно было бы при­влечь особого внимания и вызвать беспокойства. Тем более что по­страдало всего 12 человек, а ма­териальный ущерб не превысил 6 млн. долл. Между тем обеспо­коились многие сейсмологи, ин­женеры и жители городка. Дело в том, что за семь лет до этого вблизи г. Оровилла была возве­дена самая высокая в США дамба (235 м) с водохранилищем объем ом 4,4 км 3 . Вопрос о том, естественным или спровоцирован­ным является Оровиллское зем­летрясение, служит предметом исследований и дискуссий специ­алистов. Действительно, мало ли территорий, где землетрясения без вмешательства человека возникали после сейсмического молчания десятки и даже сотни лет. Эпицентр землетрясения находится в 11 км от плотины, очаг определен на глубине 8 км, само землетрясение произошло спустя 7,5 года после постройки плотины и спустя 6 лет после на­чала подъема воды в водохрани­лище. Наконец, землетрясение сопровождалось оживлением ста­рого разлома на протяжении 3,8 км с вертикальным смещением по нему около 5 см (до 18 см через всю ширину зоны), как это бывает и при естественных земле­трясениях. Но с другой стороны, ряд чисто сейсмологических ха­рактеристик, таких, как соотноше­ние частоты и магнитуды афтершоков, продолжительность сильных колебаний и т. п., отли­чается от обычных в Калифорнии землетрясений. Слабые толчки начались сразу после заполнения водохранилища. Именно в течение предшествующих землетрясению четырех месяцев подъем воды в водохранилище происходил с наибольшей, чем когда-либо прежде, скоростью и на самую большую высоту - 45 м. Макси­мальный уровень был достигнут 24 июня, а 28 июня начались пер­вые толчки.

Расположение очага по отноше­нию центра нагрузки водной мас­сы не дает оснований говорить о непосредственном влиянии веса воды, накопленной в водохрани­лище, но и we позволяет исклю­чить факт изменения давления вод в трещинах в связи с запол­нением резервуара.

Описание явления возбужден­ной сейсмичности мы начали с наиболее-близкого нам по време­ни события и наиболее спорного примера. Но если говорить о наиболее раннем из установлен­ных случаев возбуждения сейсми­ческой активности при заполнении водохранилищ, то надо вернуться к 1935-1936 гг.

К 1935 г. в США, на границе штатов Невада и Аризона, было закончено сооружение крупней­шей по тем временам арочной плотины Гувер на р. Колорадо, и началось заполнение водохра­нилища Мид. В сентябре следую­щего года, т. е. примерно год спустя после начала заполнения, когда уровень воды поднялся на 100 м, возникли сейсмические толчки. Насколько они были не­ожиданны в этом районе, показы­вает тот факт, что установка сейс­мографов здесь даже не преду­сматривалась. Первые три сейсмо­графа были установлены лишь в 1937 г., а в 1938 и 1940 гг. местную сеть сейсмологических наблюдений пришлось расширить. Количество слабых землетрясе­ний в 1937-1947 гг. измерялось тысячами, глубина большинства из них не превышала 6-8 км. К 1939 г. водохранилище запол­нилось, достигнув объема 35 млрд. м 3 . 4 мая того же года область была потрясена сильным (магнитуда равная 5) толчком, вы­делившим столько энергии, сколь­ко все остальные, вместе взятые землетрясения.

Исследования установили со­ответствие между выделением сейсмической энергии и пиками водной нагрузки в 1938-1949 гг. С 1951 г. колебания уровня имели только сезонный характер, сходя на нет благодаря постройке выше по течению других плотин, и кор­реляция названных величин исчез­ла. В последние годы у плотины отмечаются только микроземле­трясения. На других строящихся водохранилищах американские исследователи уже заблаговре­менно устанавливали сейсмогра­фы. В результате на 10 из 68 во­дохранилищ была зарегистриро­вана возбужденная сейсмичность. В другом полушарии, на Индо-станском п-ве, люди, проживав­шие в окрестностях 12 крупных искусственных резервуаров, не испытывали никаких подземных толчков. Поэтому, когда в 1961 г. началось заполнение водохрани­лища на р. Койна с проектной вы­сотой плотины 103 м и объемом 2780 млн. м 3 , ничто, казалось бы, не предвещало беды. И однако именно здесь, в спокойной плат­форменной области, сложенной докембрийскими кристаллически­ми породами, в декабре 1967 г. произошло 8-9-балльное зем­летрясение, унесшее 180 челове­ческих жизней, оставившее 2,3 тыс. раненых и причинившее значительный материальный ущерб. Сама плотина была сильно повреждена. Землетрясение име­ло эпицентр в 3-5 км южнее плотины и захватило огромную область щита радиусом около 700 км (водохранилище занимало площадь всего 50 на 2-5 км). Среди значительного количества последующих толчков некоторые имели магнитуду 5-5,4. Такое сильное землетрясение было неожиданным, хотя слабые толчки начались вскоре после достижения 1/2 проектного уровня воды в водохранилище, и в дальней­шем их интенсивность и частота возрастали.

К этому времени уже были известны такие сильные землетря­сения, как у плотины Синьфенкан в Китае в 1962 г., у водохрани­лища Кариба на р. Замбези в 1963 г., у плотины Кремаста в Греции в 1966 г. В 6 случаях воз­бужденные землетрясения по интенсивности превосходили 5 баллов, в 12 случаях они были лишь немногим слабее. Много­численные значительно более слабые толчки отмечались в связи с заполнением водохранилищ «о многих других странах: во Фран­ции, Испании, Швейцарии, Италии, Югославии, Канаде, Бразилии, Японии, Австралии и др. Француз­ский сейсмолог Ж. Роте, кажется, был первым, кто еще 10 лет на­зад попытался обобщить извест­ные случаи и обнаружить главные закономерности. Одними из пер­вых были обобщения советских ученых И. Г. Кассина и Н. И. Ни­колаева.

Возбужденная сейсмичность наблюдается не только в преде­лах подвижных поясов Земли, она проявляется и на древних стабиль­ных платформах. Обычно земле­трясения имеют локальный и приповерхностный характер, кон­центрируются вдоль существо­вавших разломов, причем эпи­центры располагаются на расстоя­нии до 10-15 км от зеркала воды водохранилищ. Активность уси­ливается особенно явно после подъема уровня воды выше 100 м, хотя может появиться и при подъ­еме уровня на 40-80 м. Частота вызванных землетрясений в боль­шинстве случаев связана не столь­ко с высотой уровня воды, сколько с величиной и скоростью перепа­да уровней. При одном и том же удельном давлении столба воды вероятность толчков тем больше, чем большую площадь занимает водохранилище и на большую площадь воздействует.

Режим спровоцированных зем­летрясений нередко имеет специ­фический, отличный от обычных землетрясений, характер. Это проявляется в постепенном, по мере наполнения водохранилища, учащении и усилении сейсмиче­ских событий вплоть до макси­мального, после чего в соответ­ствии с общим уменьшением ко­лебаний водного уровня или даже при продолжающихся коле­баниях отмечается затухание сейс­мической активности. Периоды усиления и ослабления возбуж­денной сейсмичности могут про­должаться по нескольку лет (до 6-8 или даже 12-15 лет).

В нашей стране возбужденная сейсмичность лучше всего изуче­на в окрестностях Нурекского гид­роузла на р. Вахш в Таджикистане. Как известно, Таджикистан явля­ется одной из наиболее сейсми­чески активных областей в СССР. Это в данном случае давало сейсмологам то преимущество, что они могли подробно изучить специфику местных землетрясе­ний и особенности сейсмического режима задолго до начала запол­нения водохранилища и тем са­мым более надежно выделить возбужденную сейсмичность.

И это в полной мере удалось ис­пользовать. К началу заполнения водохранилища исследователи располагали серией детальных наблюдений продолжительностью 12 лет, а ко времени интенсивного заполнения (1972 г.)-17 лет, че­го не было ни в одном другом районе мира. За это время прост­ранственное распределение зем­летрясений оставалось стабиль­ным. Изменение квартальных и годовых сумм землетрясений с 1955 по 1975 г. показало, что ко­личество землетрясений в районе водохранилища (в заранее вы­бранных и постоянных границах) начало увеличиваться с 1967 г., а максимума достигло в 1972 г. В 1967 г. водохранилище запол­нилось до 40-метрового, а в 1972 г.- до 100-метрового уров­ня. С 1960 по 1971 г. возникало 26 землетрясений в среднем за квартал, но с начала 1971 г. это число возросло до 40, а послед­ний квартал 1972 г. отмечен 133 землетрясениями, после чего произошел спад количества толч­ков. Но в более широком районе в те же годы количество земле­трясений, за вычетом толчков вокруг водохранилища, даже несколько уменьшилось. В 1972-1973 гг. очаги землетрясений, и без того преимущественно не­глубоких, стали еще мельче, т. е. сейсмическая деятельность в районе водохранилища как бы приблизилась к поверхности Зем­ли (95% толчков на глубине не свыше 5 км). При этом землетря­сения группировались под водо­хранилищем вблизи плотины и по мере его быстрого наполнения несколько смещались соответ­ственно перемещению центра на­грузки столба воды.

Второй этап интенсивного запол­нения начался в июле-августе 1976 г. И снова возросло число толчков. Усиление сейсмичности в районе Нурекского водохрани­лища произошло в связи с его заполнением. Слабые толчки в районе водохранилища продол­жаются и сейчас.

Плотина Токтогульской ГЭС на р. Нарын в горах Тянь-Шаня под­нялась уже на 215 м, и за ней пле­щутся волны нового водохрани­лища. После того как уровень воды превысил 100 м, приборы начали регистрировать усиление сейсмической деятельности. Ана­логично дело обстояло при запол­нении водохранилищ Чиркейской ГЭС в Дагестане и Чарвакского гидроузла в Узбекистане. Отме­чая отсутствие вблизи Нурекского и Токтогульского водохранилищ сколько-нибудь сильных возбуж­денных землетрясений, мы долж­ны сделать оговорку: «До сих пор». Ведь уровень воды должен подняться до 300 м, а спровоци­рованные сильные землетрясения могут отделяться от периода мак­симального подъема уровня не­сколькими годами.

Если говорить о сильных воз­бужденных землетрясениях в равнинно-платформенных районах страны, то нельзя не вспомнить землетрясения к югу от Новоси­бирска у г. Камень-на-Оби в 1963 г. Это землетрясение силой до 8 баллов было здесь неожи­данным. Лишь гораздо позднее стали связывать его с заполне­нием в 1957-1959 гг. Обского моря объемом 8,8 км 3 .

Конечно, заполнение далеко не каждого даже крупного водохра­нилища чревато сейсмическими событиями. Например, мы не знаем землетрясений в окрест­ностях Куйбышевского, Цимлян­ского, Красноярского, Братского и других морей. Никакой сейсми­ческой активности не отмечено после заполнения крупных водо­хранилищ Бхакра в Индии (высота плотины 225 м), Даниэль Джон­сон в Канаде (214 м), Глен Каньон в США (216 м), Гран Диксанс в Швейцарии (284 м) и др. Однако именно эта неоднозначность по­следствий предъявляет исследо­вателям, пожалуй, еще большие требования, так как необходимо научиться предвидеть, в каких именно случаях можно ожидать сейсмических последствий и каков может быть их максимальный эффект.

К началу 70-х годов в мире бы­ло известно 35 случаев усиления сейсмической активности в связи с наполнением водохранилищ. И хотя это составляет всего ‘/в от общего числа крупных водохра­нилищ, пренебречь этим заявле­нием нельзя, потому что земле­трясения, в том числе и разру­шительные, появились там, где их не ждали. А ведь в настоящее вре­мя в мире проектируется и стро­ится 135 значительных водохра­нилищ. Даже если только на 15 из них возникнут сейсмические не­приятности, необходимо сделать все возможное, чтобы предусмот­реть и предупредить их.

При знакомстве с каждым но­вым явлением специалисты не могут ограничиваться феномено­логией, но стремятся познать его причины. И возбужденная сей­смичность имеет несколько объяснений. Все они в той или иной мере гипотетичны. Чтобы лучше разобраться в этом вопросе, не­обходимо рассмотреть предвари­тельно другие сходные проявле­ния оживления земной коры. Речь пойдет об искусственных землетрясениях вне зон возник­новения водохранилищ.

Подземные ядерные взрывы - возбудители сейсмичности

В сущности, сам ядерный взрыв, произведенный под землей,- это искусственное землетрясение. И воздействие его на поверхность Земли и земную кору, если не касаться специфических геофизи­ческих вопросов, подобно обыч­ному землетрясению соответст­вующей магнитуды.

Специалистам известно, что каждый из 8 сильных взрывов на полигоне в штате Невада (мощ­ностью от 0,1 до 1,2 Мт) соответ­ствовал землетрясению магнитудой от 5 до 6 и сопровождался оживлением существовавших вблизи разломов в земной коре. В этих случаях смещения по раз­ломам измерялись десятками сантиметров (до 1,2 м) в верти­кальной плоскости и сантиметра­ми (до 15 см) вдоль протяжения разлома. Смещения крыльев раз­ломов имели ту же направлен­ность, что и установленные геоло­гическими методами естественные смещения. Длина обновившихся в связи совзрывами разрывов на поверхности составляла иногда даже километры (максимально до 8 км). Длина обновившихся раз­рывов прямо зависит от магни­туды взрыва, подобно тому как это наблюдается и при землетря­сениях естественных.

Сопутствующие и последующие тектонические явления были прослежены при взрыве мощ­ностью 1,1 Мт, произведенном в Неваде в конце 1968 г. Ядер­ное устройство было взорвано в скважине на глубине 1,4 км от поверхности земли среди плато, сложенного вулканическими по­родами плиоценового возраста. В момент взрыва на поверхности в радиусе до 450 м от эпицентра возникла масса мелких разрывов. Но гораздо важнее факт активи­зации существовавших разломов на расстоянии до 5,6 км от места взрыва, причем согласно геоло­гическим данным эти разломы не обнаруживали заметных смеще­ний в течение предшествующих нескольких миллионов лет. Взрыв инициировал десятки тысяч по­следующих толчков с магнитудой до 4,2 продолжавшихся в течение нескольких месяцев. За две не­дели, предшествовавшие взрыву, отмечено 3 слабых толчка, а в последующий за взрывом день - более тысячи; еще через две не­дели в сутки регистрировалось 15 толчков, в последующем их количество колебалось, пока спус­тя три месяца не установилось на том же уровне, что и до взры­ва. Возбужденные землетрясения группировались вдоль несколь­ких зон на глубине до 6 км, на расстоянии до 13 км от пункта взрыва. Специальные сейсмологи­ческие определения, как и не­посредственные наблюдения на поверхности, выявили правосто­роннее сдвигание и вертикальное перемещение по разломам. Раз­рывы на поверхности возникли большей частью вдоль или на продолжении разломов. Исследо­ватели пришли к выводу, что искусственное землетрясение высвободило накопленные при­родные тектонические напряже­ния, т. е. взрыв послужил как бы «спусковым механизмом» или «спусковым крючком» для сейсми­ческой разрядки накопившихся напряжений. Смещения по раз­ломам и возбужденные земле­трясения регулярно отмечались и при других взрывах в Неваде, причем максимально известное расстояние землетрясений от места взрыва достигало 20-40 км, толчки мигрировали от эпицентров взрывов, ни разу не отмечено землетрясений, более сильных, чем сами взрывы.

Другой вид смещений, относя­щихся только к приповерхност­ным слоям, обнаружен высоко­точными геодезическими изме­рениями. Над местами взрывов регулярно возникали концентри­ческие опускания, как бы «про­валы» на многие метры. На рас­стоянии свыше 2 км от пунктов взрыва эти оседания измерялись несколькими сантиметрами. А в нескольких случаях за такими во­ронками оседания повторными геодезическими измерениями об­наружены внешние компенса­ционные кольца поднятия, правда, на величину порядка всего 2 см.

Уже из этих примеров становит­ся ясно, сколь существенные на­рушения как на поверхности, так и в верхних частях земной коры связаны с подземными ядерными взрывами. Было бы неверно ду­мать, что все это относится толь­ко к Неваде и связано со специ­фикой ее напряженного состоя­ния, тектоникой и потенциальной сейсмичностью этой территории.

Существует еще один вид воз­бужденной сейсмичности. Это землетрясения, вызванные откачи­ванием и закачиванием жидкости в скважины. Такое явление обна­ружили случайно. На одном из заводов близ г. Денвер (штат Колорадо, США) отработанные воды с вредными примесями ре­шили закачивать глубоко под зем­лю через скважины. Была выбра­на отработанная скважина глуби­ной свыше 3,6 км, достигшая крис­таллического фундамента. В мар­те 1962 г. началась закачка отхо­дов. В конце апреля появились сведения о сейсмических толчках, ранее здесь не наблюдавшихся. Частота толчков возросла в апре­ле - июне 1962 г. и в феврале-марте следующего года. Именно в эти периоды в скважину зака­чивалась вода. Толчки возникали на глубине 4,5-5,5 км, с эпи­центрами не далее нескольких километров от скважины, их магнитуда достигала 3. После того как ученые высказали предполо­жение о связи локальной сейсми­ческой активности с закачкой воды в скважину, было решено повторить случайный эксперимент под строгим контролем. После­дующее сопоставление объема закачанной воды и количества толчков помесячно дало полное совпадение этих показателей. Толчки продолжались и даже ста­ли более сильными в 1967 г. (с магнитудой до 5,4) после прекра­щения закачивания вод в сква­жину. За всю предшествующую историю в Денвере произошло только одно землетрясение в 1882 г. Вероятность случайного возникновения 1500 толчков в ограниченной области вблизи забоя скважины согласно анали­зу столетней сейсмической ис­тории района оказалась ничтожно малой. И опять, как в случае с землетрясениями, возбужденны­ми заполнением водохранилищ и ядерными взрывами, подвижки в очагах землетрясений оказа­лись аналогичными таковым при обычных тектонических землетря­сениях в данном районе.

Позднее появились сообщения о связи между интенсивностью от­работки нефтяных месторожде­ний и местными землетрясения­ми. На известном нефтяном мес­торождении Уилмингтон к югу от Лос-Анджелеса в Калифорнии, разрабатываемом с конца 20-х годов, толчки отмечались в 1947, 1949, 1951, 1954, 1955 и 1961 гг. Сейсмологи связывают их с воз­никновением касательных напря­жений при оседании поверхност­ных слоев со скоростью 30- 70 см/год вследствие откачки нефти. Наиболее сильные толчки сопровождались сдвиганием пла­стов на глубине около 0,5 км и повреждением на этой глубине скважинных агрегатов.

В нашей стране сообщалось о семибалльном землетрясении в мае 1971 г. на северокавказских нефтяных месторождениях в райо­не г. Грозного. Очаг землетря­сения располагался на глубине 2,5 км, так что на поверхности оно вызвало семибалльный эф­фект, землетрясение сопровож­далось последующими толчками. Землетрясение связывают с от­качкой нефти из меловых извест­няков с глубины 4 км. Хотя добы­ча нефти ведется здесь 80 лет, но наиболее активная откачка пришлась на предшествующие со­бытию годы, так что за 7 лет давление в пластах упало на 250 атм, в том числе на 115 атм в 1969 г.

Особую группу искусственных толчков представляют горные удары в шахтах, которые, по су­ществу, являются микроземлетря­сениями. Несмотря на их незна­чительную в сравнении с настоя­щими землетрясениями интен­сивность, они имеют огромное зна­чение в практике подземных гор­ных работ, так как сопровожда­ются внезапным» выбросами газов и горных пород, завалами и разрушениями горных выработок, нарушениями нормальной эксплу­атации подземных месторожде­ний и даже человеческими жерт­вами. Например, в США отмечен случай, когда горный удар ощу­щался как землетрясение в ра­диусе 6 км. На одном из место­рождений Франции выбросы соли и газа случаются почти ежегодно в течение 50 лет.

Практика и специальные иссле­дования на месторождениях СССР, ГДР и Польши показали, что выбросоопасными являются отдельные участки и зоны, пре­имущественно тяготеющие к участкам современного поднятия и резкого изменения скорости со­временных движений земной ко­ры или непосредственно к актив­ным тектоническим зонам, т. е. наиболее напряженным участ­кам в поле современной текто­нической активности.

Заметный толчок и свыше 100 последующих толчков были заре­гистрированы в июне 1974 г- в окрестностях Нью-Йорка на глу­бине всего 0-1,5 км в известня­ковых штольнях. В других мес­тах сейсмографы, установленные вблизи глубоких шахт, фиксиро­вали усиление сейсмической ак­тивности в рабочие дни и спо­койствие в воскресенье. Поэтому необычные события резонно свя­зываются с разгрузкой земной ко­ры в результате изъятия породы из штолен. Хотя случаи возбуж­денных в результате добычи по­лезных ископаемых землетрясе­ний единичны и сами толчки име­ют небольшую магнитуду, их нельзя недооценивать хотя бы потому, что, будучи неглубокими, они сильнее соответствующих по магнитуде обычных землетрясе­ний сказываются на поверхности, могут поражать густонаселенные территории и нарушить эксплуата­цию месторождений.

О причинах и механизме возбужденных землетрясений

Если суммировать известные случаи такого рода событий, то можно выделить следующие основные факторы человеческой деятельности, которые приводят к возбужденным движениям зем­ной коры и землетрясениям: 1) изменение гидростатических и гидродинамических условий (рав­новесия) в недрах в процессе изъятия или внедрения флюидов; 2) выемка горных пород в твер­дой фазе при разного рода под­земных работах; 3) перераспре­деление нагрузок на поверхности земной коры в связи с созданием водохранилищ, городов, крупных отвалов или созданием крупных котлованов и карьеров; 4) влия­ние динамических нагрузок, преж­де всего сильных взрывов.

Назвать факторы, конечно, еще не значит определить причины явления. Казалось бы, самой прос­той и естественной причиной можно было бы считать воздейст­вие на земную кору дополни­тельной нагрузки водохранилищ. Но связь этих двух явлений не проста, а кроме того, и смещения, и землетрясения возникают не только при создании водохрани­лищ, но и при других видах чело­веческой деятельности.

В настоящее время исследова­ния по этой проблеме находятся в такой стадии, что ученые могут только наметить несколько веро­ятных причин или возможных механизмов возбужденных земле­трясений и смещений по раз­рывам.

Назовем главные из них.

  1. Влияние дополнительной со­средоточенной нагрузки водных масс водохранилищ, или, иными словами, нарушение гравитацион­ного равновесия в земной коре.
  2. Увеличение давления порово-трещинных вод, в результате чего снижается трение (сопротивление сдвигу) в зонах разрыва и облег­чается возникновение сейсмиче­ских подвижек.
  3. Увеличение трещиноватости и ослабление прочности массива пород при возрастающем давле­нии порово-трещинных вод (осо­бенно в случае закачки флюидов в породы).
  4. Снижение прочности пород за счет расклинивающего действия поверхностно-активных слоев

породы в мельчайших трещинах и порах, куда попадает вода.

Большинство исследователей склоняется теперь к признанию того, что именно перераспреде­ление и изменение давления порово-трещинных вод играют ре­шающую роль в механизме воз­бужденных землетрясений. Со­ветский исследователь И. Г. Киссин развитие процесса представ­ляет следующим образом:

«В зоне будущего очага суще­ствуют тектонические напряжения, однако величина их в естествен­ных условиях недостаточна, что­бы вызвать разрыв. По мере того как в результате инженерной дея­тельности возрастает давление порово-трещинных вод, в этой зоне уменьшается фракционное сопротивление деформациям ска­лывания. Когда величина давле­ния достигнет определенного предела, начинаются акты гидрав­лического разрыва. Распростра­нению трещин способствует также влияние адсорбционных слоев поровой жидкости.

Вследствие развития ориенти­рованных трещин повышается ска­лывающее напряжение по пло­щади сохранившихся связей. При увеличении площади нарушенных связей (вновь образовавшихся трещин) должно возрасти сопро­тивление сдвигающим силам за счет трения. Однако этому пре­пятствует воздействие порово-трещинной жидкости, уменьшаю­щей трение на плоскости сдви­га… при увеличении давления жидкости относительный рост напряжений сдвига по площади сохранившихся связей также уве­личится. Под влиянием возрастающего давления жидкости происхо­дят индивидуальные разрывы и сколы, приводящие к ослабле­нию массива и регистрируемые в виде форшоков. При этом скалы­вающее напряжение увеличивает­ся до предела, когда становится возможным основной разрыв. Раз­витие дислокаций при вызванных землетрясениях, начинающееся с повышения давления флюидов, в дальнейшем может привести к вспарыванию зоны очага на зна­чительные глубины, где жидкость уже не влияет на деформацион­ные процессы».

Тот факт, что возбужденные землетрясения возникают не во всех случаях воздействия челове­ка на земную кору, лишь под­черкивает отсутствие достаточ­ного естественного уровня на­пряжений в одних местах земной коры и как бы подготовленность земной коры к разрывам и земле­трясениям в других. Для участ­ков повышенной тектонической активности или длительно накап­ливающихся тектонических на­пряжений дополнительные на­грузки или перераспределение напряжений в связи с человече­ской деятельностью могут слу­жить как бы своего рода «спуско­вым крючком» для уже подго­товленных естественным путем землетрясений. Весьма благопри­ятным условием для проявления возбужденных землетрясений служит наличие прочных кристал­лических пород, разбитых разло­мами, или контактов пород с различной прочностью и другими свойствами. С другой стороны, да­же в районах проявления естест­венных землетрясений, но с однородными сравнительно плас­тичными породами в припо­верхностных частях земной ко­ры, возбужденные землетрясения при дополнительных воздействиях не возникают.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ