Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Обмотка лабораторного регулировочного автотрансформатора (ЛАТР) намотана на железном сердечнике, имеющем форму прямоугольного тороида (рис.). Для защиты от вихревых токов Фуко сердечник делают из тонких железных пластин, покрытых изолирующим слоем лака. Такой сердечник можно сделать разными способами:
 а) набирая его из тонких колец, положенных стопкой одно на другое;
 б) свертывая в рулон тонкую длинную ленту шириной h ;
 в) собирая из прямоугольных пластин размером l × h , расположив их вдоль радиусов цилиндра.

Эксперимент.
 Наблюдать возникновение токов Фуко можно с помощью следующей установки. Маятник, состоящий из куска металла, подвешенного на нити между полюсами электромагнита, выведенный из положения равновесия при отсутствии тока в электромагните, совершает слабо затухающие колебания. При включении тока колебания почти мгновенно затухают, и движение маятника до его остановки напоминает движение в вязкой среде. Это объясняется тем, что возникшие при движении маятника в магнитном поле токи Фуко имеют такое направление, что действующие на них со стороны магнитного поля силы тормозят движение маятника.

 Если сплошной сектор маятника заменить гребенкой с длинными зубцами, то возбуждение токов Фуко будет сильно затруднено. Маятник будет колебаться в магнитном поле почти без затухания. Этот опыт объясняет, почему сердечники электромагнитов и рамы трансформаторов делают не из сплошного куска железа, а из многих листов, наложенных друг на друга. В результате токи Фуко возбуждаются слабо и сильно уменьшается вредное влияние джоулева тепла, выделяемого ими.
Теория.
Токи Фуко − индукционные токи, возникающие в массивных проводниках
в переменном магнитном поле, называются токами Фуко. Иногда они играют полезную роль, а иногда вредную.
 Токи Фуко играют полезную роль в роторе асинхронного двигателя, приводимого в движение вращающимся магнитным полем, поскольку само осуществление принципа работы асинхронного двигателя требует возникновения токов Фуко. Являясь токами проводимости, токи Фуко рассеивают часть энергии на выделение джоулевой теплоты. Эта потеря энергии в роторе асинхронного двигателя является бесполезной , но с ней приходится мириться, избегая лишь чрезмерного перегревания ротора. Но одновременно с этим в сердечниках электромагнитов асинхронного двигателя, выполненных обычно из ферромагнетиков, являющихся проводниками, также возникают токи Фуко, которые не имеют никакого значения для принципа работы электромагнитов, но нагревают эти сердечники, ухудшая тем самым их характеристики . С ними необходимо бороться, как с вредным фактором. Борьба заключается в том, что сердечники изготовляют из тонких пластин, отделенных одна от другой слоями изолятора, причем их устанавливают так, чтобы токи Фуко были направлены поперек пластин. Благодаря этому при достаточно малой толщине пластин токи Фуко не могут развиваться и имеют незначительную объемную плотность.
 Джоулева теплота, выделяемая токами Фуко, полезно используется в процессах разогрева или даже плавки металлов , когда это оказывается более выгодным или целесообразным по сравнению с другими методами разогрева. Если производить разогрев металла токами очень высокой частоты, то в результате скин-эффекта раскаляется только поверхностный слой проводника.

(б, в) Сплошной кусок металла , находящийся в переменном магнитном поле, представляет собой проводник сопротивления, вследствие чего сила индукционных токов достигает в нем больших значений.
 Так как ЭДС индукции пропорциональна быстроте изменения потока магнитной индукции, то величина токов Фуко тем больше, чем быстрее меняется то магнитное поле, в которое внесен данный проводник. Поэтому возникновение токов Фуко легче наблюдать, если внести проводник в полость соленоида, по обмотке которого пропускается быстро переменный ток, вызывающий также быстро меняющееся по величине магнитное поле. В этом случае токи Фуко в массивных хорошо проводящих телах достигают такой силы, что выделяющегося тепла оказывается достаточно, чтобы раскалить тело. Этот метод широко используется в вакуумной технике для прогрева внутри откачиваемого прибора металлических частей для их обезгаживания. Этот же способ употребляется для плавки металлов под вакуумом.
В кусках достаточно толстых , т. е. имеющих большие размеры в направлении , перпендикулярном к направлению индукционного тока , вихревые токи вследствие малости сопротивления могут быть очень большими и вызывать очень значительное нагревание . Если, например, поместить внутрь катушки массивный металлический сердечник и пропустить по катушке переменный ток, который 100 раз в секунду изменяет свое направление и силу, доходя до нуля и вновь усиливаясь, то этот сердечник нагреется очень сильно. Нагревание это вызывается индукционными (вихревыми) токами, возникающими вследствие непрерывного изменения магнитного потока, пронизывающего сердечник. Если же этот сердечник сделать из отдельных тонких проволок, изолированных друг от друга слоем лака или окислов, то сопротивление сердечника в направлении, перпендикулярном к его оси, т. е. сопротивление для вихревых токов, возрастет, и нагревание значительно уменьшится. Этим приемом − разделением сплошных кусков железа на тонкие изолированные друг от друга слои − постоянно пользуются во всех электрических машинах для уменьшения нагревания их индукционными токами, возникающими в переменном магнитном поле. С другой стороны, токи Фуко иногда используются в так называемых индукционных печах для сильного нагревания или даже плавления металлов.

Трансформаторы.
 Однако во многих случаях нагревание, вызываемое токами Фуко, является вредным. К таким случаям относится нагревание сердечников трансформаторов и вообще металлических сердечников всякого рода обмоток, по которым идет переменный ток. Чтобы избежать такого нагревания, сердечники делают слоистыми, отделяя слои друг от друга тонкой прослойкой изоляции, расположенной перпендикулярно к направлению токов Фуко.
 Появление ферритов (магнитных материалов с большим электрическим сопротивлением) сделало возможным изготовление сердечников сплошными.
 (в) В трансформаторах малой мощности магнитопровод собирают из пластин П- , Ш- и О- образной формы (рис. а, б, в).


 Широкое применение получили магнитопроводы, навитые из узкой ленты электротехнической стали или из специальных железоникелевых сплавов типа пермаллой. Их можно использовать для стержневых, броневых, тороидальных и трёхфазных трансформаторов (г, д, е, ж).

Скин-эффект.
 Токи Фуко могут возникать и в самом проводнике, по которому течет переменный ток. Появление таких токов ведет к особому поверхностному эффекту (называемому также скин-эффектом от английского слова skin , что значит кожа). Если переменный ток идет по цилиндрическому проводнику , то в моменты увеличения тока индукционные токи Фуко будут направлены как показано на рисунке.

 Эти токи направлены у поверхности проводника в направлении первичного электрического тока, а у оси проводника − навстречу току. В результате внутри проводника ток ослабнет, у поверхности увеличится. Таким образом, вследствие возникновения индукционных токов Фуко, ток будет распределен неравномерно по сечению проводника.
 При быстропеременных токах плотность тока вблизи оси проводника практически оказывается равной нулю, и весь ток идет по поверхности проводника. Вследствие этого и магнитное поле внутри проводника делается равным нулю. Это явление вызывает увеличение сопротивления проводника, так как по внутренним частям проводника ток не идет. Так как эти внутренние части оказываются бесполезными, то в целях экономии металла провода для быстропеременных токов делаются полыми. Токи Фуко приводят также к уменьшению коэффициента самоиндукции проводника. Это можно пояснить на примере цилиндрического проводника.
 В силу скин-эффекта проводники в высокочастотных схемах не имеет смысла делать сплошными. Для уменьшения сопротивления нужно увеличивать их поверхность, а не сечение, т. е. изготовлять проводники в виде трубок . В электропечах этим обстоятельством пользуются, охлаждая трубки катушки, по которым идет ток высокой частоты, с помощью воды, циркулирующей внутри трубок.

Генераторы.
 Генераторы обычно приводятся в движение сравнительно тихоходными водяными турбинами или двигателями внутреннего сгорания. При работе же с паровыми турбинами, вращающимися с частотой 1500 − 3000 оборотов в минуту, применяется несколько иная конструкция ротора (индуктора). Ротор не имеет выступов, а представляет собой гладкий цилиндр, на наружной поверхности которого в пазах уложена обмотка. При большой частоте вращения это выгоднее, потому что выступы на роторе создают воздушные вихри и увеличивают механические потери.
 Форма полюсных наконечников на выступах ротора специально рассчитывается так, чтобы индуцированная в обмотке ЭДС изменялась со временем по закону синуса, т. е. чтобы форма напряжения и тока, даваемого генератором, была синусоидальной.
 Статор генератора − его неподвижная часть − представляет собой железное кольцо, в пазах которого уложены обмотки якоря. Для уменьшения потерь на токи Фуко это кольцо делается не сплошным, а состоящим из отдельных тонких листов железа, изолированных друг от
друга.

Смотрите еще : В 1824 году французский физик Даниэль Араго впервые наблюдал действие вихревых токов на медный диск, расположенный под магнитной стрелкой на одной оси. При вращении стрелки в диске наводились вихревые токи, приводя его в движение. Это явление получило название «эффекта Араго» в честь его первооткрывателя.

Исследования вихревых токов были продолжены французским физиком Жаном Фуко. Он подробно описал их природу и принцип действия, а также наблюдал явление нагрева ферромагнетика, вращаемого в статическом магнитном поле. Токи новой природы были тоже названы в честь исследователя.

Природа вихревых токов

Токи Фуко могут иметь место при воздействии на проводник переменного магнитного поля, либо при перемещении проводника в статическом магнитном поле. Природа вихревых токов аналогична индукционным, которые возникают в линейных проводах при прохождении через них электрического тока. Направление вихревых токов замкнуто по кругу и противоположно вызывающей их силе.

Токи Фуко в хозяйственной деятельности человека

Самый простой пример проявления токов Фуко в обыденной жизни - их воздействие на магнитопровод обмоточного трансформатора. Из-за воздействия наведенных токов появляется низкочастотная вибрация (трансформатор гудит), способствующая сильному нагреву. В этом случае энергия тратится впустую, а КПД установки падает. Для предотвращения значительных потерь сердечники трансформаторов не изготовляют цельными, а набирают из тонких полос электротехнической стали с низкой удельной электропроводностью. Полосы изолированы между собой электротехническим лаком или слоем окалины. Появление ферритовых элементов позволило выполнять малогабаритные магнитопроводы цельными.

Эффект от действия вихревых токов используется повсеместно в промышленности и машиностроении. Поезда на магнитной подвеске используют токи Фуко для торможения, высокоточные приборы имеют систему демпфирования указывающей стрелки, основанной на действии вихревых токов. В металлургии широко распространены индукционные печи, имеющие целый комплекс преимуществ перед аналогичными установками. В индукционной печи нагреваемый металл можно поместить в безвоздушное пространство, добиваясь его полной дегазации. Индукционная плавка черных металлов также получила широкое распространение в металлургии ввиду высокой экономичности установок.

Токи Фуко это токи, которые возникают в массивном проводнике, находящемся в переменном магнитном поле. Токи Фуко имеют вихревой характер. Если обычные индукционные токи движутся по тонкому замкнутому проводнику, то вихревые токи замыкаются внутри толщи массивного проводника. Хотя при этом они больше не чем не отличаются от обычных индукционных токов.

Токи Фуко замыкаются в толще проводника в виде круговых контуров маленьких вихрей. Величина этих токов тем выше, чем выше скорость изменения магнитного потока. Это может быть переменное магнитное поле либо сам массивный проводник может, двигается в неизменном магнитном поле.

Направление токов Фуко определяется по правилу Ленца также как и направление обычных токов возникших вследствие электромагнитной индукции. Они всегда направлены встречно потоку, вызвавшему их, и стремятся ему противодействовать.

Можно провести такой эксперимент. Создать постоянный магнитный поток. Например, между двумя постоянными магнитами. И вносить в поле между ними медную или алюминиевую пластину. Будет видно, что пластина движется с усилием. Поскольку в ней при движении возникают токи Фуко, которые взаимодействуют с полем магнитов. Поскольку поле этих токов будет направлено встречно внешнему полю, то они будут отталкиваться друг от друга. Рекомендуется брать именно медную или алюминиевую пластины, так как у этих материалов мало удельное сопротивление. Следовательно сила тока в них будет большей и эффект проявится более явно.

Рисунок 1 — схема опыта

Такое проявление вихревых токов используется в технике. Например, в асинхронном электродвигателе. Статор, которого создает вращающееся магнитное поле. А ротор выполнен в виде массивной болванки. В результате, когда вокруг болванки начинает вращаться магнитное поле, она как бы цепляется за него и тоже начинает вращаться вслед за ним.

Поскольку сопротивление проводника, конечно, то токи, текущие в его толще приводят к нагреву проводника. Это явление используется для плавки металлов в металлургии. Металл помещают в тигель вокруг которого находится индуктор, по которому пропускают переменный ток большой силы. Магнитное поле, которое возникает в контуре, пронизывает металл, который в свою очередь плавится.

Но кроме полезного тепла при плавке токи Фуко приносят и вред в других электрических машинах. Например, в трансформаторах или электродвигателях. В которых энергия магнитного поля не должна расходоваться на тепло. Для борьбы с вихревыми токами ферромагнитные сердечники выполняют шихтованными, то есть набирают из тонких пластин изолированных между собой. При этом магнитный поток должен быть направлен перпендикулярно плоскости пластин. Таким образом, минимизируются потери энергии на нагрев.

Электричество окружает нас не только на производстве, но и в быту. Человек может даже не знать, что такое вихревые токи, но с работой, ими совершаемой, ежедневно сталкиваться. Например, люди давно привыкли включать свет простым нажатием клавиши выключателя, не задумываясь о происходящих при этом процессах. Так и случилось в данном случае. Поэтому чтобы понять, что же скрывается под термином «вихревые токи Фуко» и определиться с механизмом их возникновения, необходимо вспомнить свойства электрического тока. Но сначала ответим на вопрос «почему именно Фуко»?

Впервые вихревые токи были упомянуты в трудах французского физика Араго Д. Ф. Он обратил внимание на странное поведение медного диска, над которым располагалась вращающаяся намагниченная стрелка. Без видимых причин диск начинал вращаться вместе с вращением стрелки. В то время (1824 г.) объяснить такое поведение еще не могли, поэтому феномен получил название «явление Араго». Спустя несколько лет другой ученый – М. Фарадей, применив к явлению Араго открытый им закон электромагнитной индукции, пришел к выводу, что в данном случае движение диска легко объяснить с точки зрения упомянутого закона. Согласно предложенному объяснению, вращающееся магнитное поле воздействует на атомы проводника (медного диска) и вызывает появление направленного движения заряженных (поляризованных) частиц в структуре. Одно из свойств электрического тока состоит в том, что вокруг проводника всегда существует магнитное поле. Нетрудно догадаться, что и вихревые токи создают свое поле, вступающее во взаимодействие с основным, их порождающим. Слово «вихревые» характеризует способ распространения таких токов в проводнике: их направления закольцованы. Основываясь на работах Араго и Фарадея, серьезно вихревые токи изучал физик Фуко. Отсюда и полученное название.

Эти токи мало чем отличаются от индукционных, вырабатываемых генераторами. Если есть вихревое магнитное поле (переменное, вращающееся) и находящийся рядом проводник, то в нем благодаря действию электромагнитных полей наводятся токи. Чем больше и массивнее проводник, тем выше действующее значение создающихся токов. Причем, вихревые токи всегда создают такое магнитное поле, которое противится изменению потока. С ростом тока-первопричины возрастает направленная встречно ЭДС, а при снижении, наоборот, поле вихревых токов поддерживает основной поток. Вышесказанное следует из закона Ленца.

В других случаях некоторые свойства вихревых токов оказываются востребованными. Например, работа индукционных сталеплавильных печей основана на нагревающем массивный проводник действии вихревых токов, наведенных специальным генератором. Кроме того, их используют для определения наличия незаметных деффектов в структуре металла.

Что такое вихревые токи

Вихревые токи считаются одним из наиболее удивительных явлений, встречающихся в электротехнике. Поразительно, что человечество научилось использовать негативные аспекты действия вихревых токов во благо.

История открытия вихревых токов

В 1824 году французский физик Даниэль Араго впервые наблюдал действие вихревых токов на медный диск, расположенный под магнитной стрелкой на одной оси. При вращении стрелки в диске наводились вихревые токи, приводя его в движение. Это явление получило название «эффекта Араго» в честь его первооткрывателя.

Исследования вихревых токов были продолжены французским физиком Жаном Фуко. Он подробно описал их природу и принцип действия, а также наблюдал явление нагрева токопроводящего ферромагнетика, вращаемого в статическом магнитном поле. Токи новой природы были тоже названы в честь исследователя.

Природа вихревых токов

Токи Фуко могут иметь место при воздействии на проводник переменного магнитного поля, либо при перемещении проводника в статическом магнитном поле. Природа вихревых токов аналогична индукционным, которые возникают в линейных проводах при прохождении через них электрического тока. Направление вихревых токов замкнуто по кругу и противоположно вызывающей их силе.

Токи Фуко в хозяйственной деятельности человека

Самый простой пример проявления токов Фуко в обыденной жизни - их воздействие на магнитопровод обмоточного трансформатора. Из-за воздействия наведенных токов появляется низкочастотная вибрация (трансформатор гудит), способствующая сильному нагреву. В этом случае энергия тратится впустую, а КПД установки падает. Для предотвращения значительных потерь сердечники трансформаторов не изготовляют цельными, а набирают из тонких полос электротехнической стали с низкой удельной электропроводностью. Полосы изолированы между собой электротехническим лаком или слоем окалины. Появление ферритовых элементов позволило выполнять малогабаритные магнитопроводы цельными.

Эффект от действия вихревых токов используется повсеместно в промышленности и машиностроении. Поезда на магнитной подвеске используют токи Фуко для торможения, высокоточные приборы имеют систему демпфирования указывающей стрелки, основанной на действии вихревых токов. В металлургии широко распространены индукционные печи, имеющие целый комплекс преимуществ перед аналогичными установками. В индукционной печи нагреваемый металл можно поместить в безвоздушное пространство, добиваясь его полной дегазации. Индукционная плавка черных металлов также получила широкое распространение в металлургии ввиду высокой экономичности установок.

Что такое токи Фуко, их полезное использование, в каких случаюх с ними приходится бороться?

Вихревые токи или токи Фуко́ (в честь Ж. Б. Л. Фуко) - вихревые индукционные токи, возникающие в проводниках при изменении пронизывающего их магнитного потока.

Полезное использование
....Это свойство используется для демпфирования подвижных частей гальванометров, сейсмографов и др.
Тепловое действие токов Фуко используется в индукционных печах - в катушку, питаемую высокочастотным генератором большой мощности, помещают проводящее тело, в нем возникают вихревые токи, разогревающие его до плавления.
С помощью токов Фуко осуществляется прогрев металлических частей вакуумных установок для их дегазации.

Юрий Масалыга

При прохождении тока по проводнику создаётся магнитное поле препендикулярное протекающему току (правило буравчика) . Это поле порождает токи Фуко. При достаточной силе тока и толщине проводника токи Фуко становятся значительными и вызывают нагрев проводника. Поэтому провода делают многожильными, а магнитопроводы трансформаторов набирают из отдельных изолированных пластин - это предотвращает перегрев.

Кирилл Грибков

ВИХРЕВЫЕ ТОКИ (токи Фуко) - замкнутые индукционные токи в массивных проводниках, которые возникают под действием вихревого электрического поля, порождаемого переменным магнитным полем. Вихревые токи приводят к потерям электроэнергии на нагрев проводника, в котором они возникли; для уменьшения этих потерь магнитопроводы машин и аппаратов переменного тока изготовляют из изолированных стальных пластин.

Sergey x

Вихревые токи, токи Фуко, применяются для плавки и поверхностной закалки металлов, а их силовое действие используется в успокоителях колебаний подвижных частей приборов и аппаратов, в индукционных тормозах (в которых массивный металлический диск вращается в поле электромагнитов) и т. п.

Индукционные токи могут возбуждаться и в сплошных массивных проводниках. В этом случае их называют токами Фуко или вихревыми токами. Электрическое сопротивление массивного проводника мало, поэтому токи Фуко могут достигать очень большой силы.

В соответствии с правилом Ленца токи Фуко выбирают внутри проводника такие пути и направления, чтобы своим действием возможно сильнее противиться причине, которая их вызывает. Поэтому движущиеся в сильном магнитном поле хорошие проводники испытывают сильное торможение, обусловленное взаимодействием токов Фуко с магнитным полем. Этим пользуются для демпфирования (успокоения) подвижных частей гальванометров, сейсмографов и других приборов. На подвижной части прибора укрепляется проводящая (например, алюминиевая) пластинка в виде сектора (рис. 63.1), которая вводится в зазор между полюсами сильного постоянного магнита. При движении пластинки в ней возникают токи Фуко, вызывающие торможение системы. Преимущество такого устройства состоит в том, что торможение возникает лишь при движении пластинки и исчезает, когда пластинка неподвижна.

Поэтому электромагнитный успокоитель совершенно не препятствует точному приходу системы в положение равновесия.

Тепловое действие токов Фуко используется в индукционных печах. Такая печь представляет собой катушку, питаемую высокочастотным током большой силы. Если поместить внутрь катушки проводящее тело, в нем возникнут интенсивные вихревые токи, которые могут разогреть тело до плавления. Таким способом осуществляют плавление металлов в вакууме, что позволяет получать материалы исключительно высокой чистоты.

С помощью токов Фуко осуществляется также прогрев внутренних металлических частей вакуумных установок для их обезгаживания.

Во многих случаях токи Фуко бывают нежелательными, и приходится принимать для борьбы с ними специальные меры. Так, например, чтобы предотвратить потери энергии на нагревание токами Фуко сердечников трансформаторов, эти сердечники набирают из тонких пластин, разделенных изолирующими прослойками. Пластины располагаются так, чтобы возможные направления токов Фуко были к ним перпендикулярными. Появление ферритов (полупроводниковых магнитных материалов с большим электрическим сопротивлением) сделало возможным изготовление сердечников сплошными.

Токи Фуко, возникающие в проводах; по которым текут переменные токи, направлены так, что ослабляют ток внутри провода и усиливают вблизи поверхности. В результате быстропеременный ток оказывается распределенным по сечению провода неравномерно - он как бы вытесняется на поверхность проводника. Это явление называется скин-эффектом (от английского skin - кожа) или поверхностным эффектом. Из-за скин-эффекта внутренняя часть проводников в высокочастотных цепях оказывается бесполезной. Поэтому в высокочастотных цепях применяют проводники в виде трубок.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ