Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Ядерной реакцией называется процесс сильного взаимодействия атомного ядра с элементарной частицей или с другим ядром, приводящий к преобразованию ядра. Наиболее распространенным видом ядерной реакции является реакция типа , где
- легкие частицы – нейтрон, протон,-частица,-квант.

Реакции, вызываемые не очень быстрыми частицами, протекают в два этапа. На первом этапе частицы, приблизившиеся к ядру, захватываются им, образуя промежуточное ядро – компаунд-ядро. Энергия, привнесенная частицей, перераспределяется между нуклонами, и ядро оказывается в возбужденном состоянии. На втором этапе ядро испускает частицу . .

Если
, то это не ядерная реакция, а процесс рассеяния. Если
- упругое рассеяние, если
- неупругое рассеяние.

Реакции, вызываемые быстрыми нуклонами, происходят без образования промежуточного ядра – это прямые ядерные взаимодействия.

Реакции делятся:

    по роду участвующих в ядерных реакциях частиц.

    По энергии участвующих частиц (холодные, горячие)

    По роду ядер, участвующих в реакции (легкие, средние, тяжелые)

    По характеру продуктов, получаемых в результате реакции (элементарные частицы, протоны, нейтроны)

Реакции деления ядер . В 1938 году Ган и Штрассман обнаружили, что при облучении урана нейтронами образуются элементы из середины периодической системы. Реакция характеризуется выделением большого количества энергии. Впоследствии было выяснено, что захватившее нейтрон ядро может делиться разными путями. Продукты деления называются осколками. Наиболее вероятным является деление на осколки, массы которых относятся как :

Церий - стабилен

Цирконий – стабилен.

Ядро урана делится только быстрыми нейтронами. При меньших энергиях нейтроны поглощаются, и ядро переходит в возбужденное состояние – это радиационный захват.

Нейтроны, которые, образуются в результате деления урана, могут вызвать еще реакцию, и т.д. – это цепная ядерная реакция. Коэффициент размножения нейтронов – это отношение числа нейтронов в данном поколении к числу нейтронов в предыдущем поколении. Цепная реакция идет при
.

Из-за конечных размеров делящегося тела и большой проникающей способности, многие нейтроны покидают зону реакции до того как будут захвачены ядром. Если масса делящегося урана меньше некоторой критической, то большинство нейтронов вылетают наружу и цепная реакция не происходит. Если масса больше критической, нейтроны быстро размножаются, и реакция имеет характер взрыва (на этом основано действие атомной бомбы). В реакторах регулируют критическую массу, поглощая лишние нейтроны кадмиевыми и угольными стержнями.

Слияние легких ядер в более тяжелые – это реакция синтеза. Если реакция происходит при высоких температурах – это термоядерная реакция. Термоядерная реакция является, по-видимому, одним из источников энергии Солнца и звезд.

Типы взаимодействия элементарных частиц.

Развитие физики элементарных частиц связано с изучением космических лучей. Существует 2 типа космического излучения: первичное, приходящее из космоса и состоящее в основном из высокоэнергетичных протонов, и вторичное, которое образуется в результате взаимодействия первичных космических лучей с ядрами атомов земной атмосферы. Во вторичном излучении выделяют жесткую и мягкую компоненты.

Существует 4 типа взаимодействия:

Сильное взаимодействие в 100 раз больше, чем электромагнитное, и в 10 14 раз, чем слабое. Радиус действия сильного 10 -15 м, слабого 10 -19 м.

Ядерные реакции — это процессы, идущие при столкновении ядер или элементарных частиц с другими ядрами, в результате которых изменяются квантовое состояние и нуклонный состав исходного ядра, а также появляются новые частицы среди продуктов реакции.

При этом возможны реакции деления, когда ядро одного атома в результате бомбардировки (например, нейтронами) делится на два ядра разных атомов. При реакциях синтеза происходит превращение легких ядер в более тяжелые.

Другими исследователями были обнаружены превращения под влиянием α-частиц ядер фтора , натрия, алюминия и др., сопровождающиеся испусканием протонов. Ядра тяжелых элементов не испытывали превращений. Очевидно, что их большой электрический заряд не позволял α-частице приблизиться к ядру вплотную.

Ядерная реакция на быстрых протонах.

Для осуществления ядерной реакции необходимо приближение частиц вплотную к ядру, что возможно для частиц с очень большой энергией (особенно для положительно заряженных частиц, которые отталкиваются от ядра). Такая энергия (до 10 5 МэВ) сообщается в ускорителях заряженных частиц протонам, дейтронам и др. частицам. Этот метод гораздо эффективнее, чем использование ядер гелия, испускаемых радиоактивным элементом (энергия которых составляет около 9 МэВ).

Первая ядерная реакция на быстрых протонах была осуществлена в 1932 г. Удалось расще-пить литий на две α-частицы:

Ядерные реакции на нейтронах.

Открытие нейтронов явилось поворотным пунктом в исследовании ядерных реакций. Лишен-ные заряда нейтроны беспрепятственно проникают в атомные ядра и вызывают их изменения, например:

Великий итальянский физик Энрико Ферми обнаружил, что медленные нейтроны (окаю 10 4 эВ) более эффективны в реакциях ядерных превращений, чем быстрые нейтропы (около 10 5 эВ). Поэ-тому быстрые нейтроны замедляют в обыкновенной воде, содержащей большое число ядер водоро-да — протонов. Эффект замедления объясняется тем, что при столкновении шаров одинаковой мас-сы происходит наиболее эффективная передача энергии.

Законы сохранения заряда, массового числа и энергии.

Многочисленные эксперименты по различного рода ядерным взаимодействиям показали, что во всех без исключения случаях сохраняется суммарный электрический заряд частиц, участвую-щих во взаимодействии. Другими словами, суммарный электрический заряд частиц, вступающих в ядерную реакцию, равен суммарному электрическому заряду продуктов реакции (как это и сле-дует ожидать согласно закону сохранения заряда для замкнутых систем). Кроме того, в ядерных реакциях обычного типа (без образования античастиц) наблюдается сохранение массового ядерно-го числа (т.е. полного числа нуклонов).

Сказанное подтверждается всеми приведенными выше типами реакций (суммы соответствую-щих коэффициентов при ядрах с левой и правой сторон уравнений реакции равны), см. табл.

Оба закона сохранения относятся также и к ядерным превращениям типа радиоактивных распадов.

В соответствии с законом сохранения энергии изменение кинетической энергии в процессе ядерной реакции равно изменению энергии покоя участвующих в реакции ядер и частиц.

Энергетическим выходом реакции называется разность энергий покоя ядер и частиц до реак-ции и после реакции. Согласно сказанному ранее, энергетический выход ядерной реакции равен также изменению кинетической энергии частиц, участвующих в реакции.

Если кинетическая энергия ядер и частиц после реакции больше, чем до реакции, то говорят о выделении энергии, в противном случае - о ее поглощении. Последний случай осуществляется при бомбардировке азота α-частицами, часть энергии переходит во внутреннюю энергию вновь образовавшихся ядер. При ядерной реакции кинетическая энергия образовавшихся ядер гелия на 17,3 МэВ больше кинетической энергии вступавшего в реакцию протона.

И способность использовать ядерную энергию, как в созидательных (атомная энергетика), так и разрушительных (атомная бомба) целях стало, пожалуй, одним из самых значимых изобретений прошлого ХХ века. Ну а в основе всей той грозной силы, что таиться в недрах крохотного атома лежат ядерные реакции.

Что такое ядерные реакции

Под ядерными реакциями в физике понимается процесс взаимодействия атомного ядра с другим подобным ему ядром либо разными элементарными частичками, в результате чего происходит изменения состава и структуры ядра.

Немного истории ядерных реакций

Первая ядерная реакция в истории была сделана великим ученым Резерфордом в далеком 1919 году во время опытов по обнаружению протонов в продуктах распада ядер. Ученый бомбардировал атомы азота альфа частицами, и при соударении частиц происходила ядерная реакция.

А так выглядело уравнение этой ядерной реакции. Именно Резерфорду принадлежит заслуга открытия ядерных реакций.

Затем последовали многочисленные опыты ученых по осуществлению различных типов ядерных реакций, например, весьма интересной и значимой для науки была ядерная реакция, вызванная бомбардировкой атомных ядер нейтронами, которую провел выдающийся итальянский физик Э. Ферми. В частности Ферми обнаружил, что ядерные преобразования могут быть вызваны не только быстрыми нейтронами, но и медленными, который двигаются с тепловыми скоростями. К слову ядерные реакции, вызванные воздействием температуры, получили название термоядерных. Что же касается ядерных реакций под действием нейтронов, то они очень быстро получили свое развитие в науке, да еще какое, об этом читайте дальше.

Типичная формула ядерной реакции.

Какие ядерные реакции есть в физике

В целом известные на сегодняшний день ядерные реакции можно разделить на:

  • деление атомных ядер
  • термоядерные реакции

Ниже детально напишем о каждой из них.

Деление атомных ядер

Реакция деления атомных ядер подразумевает распад собственно ядра атома на две части. В 1939 году немецкими учеными О. Ганом и Ф. Штрассманом было открыто деления ядер атома , продолжая исследования своих ученых предшественников, они установили, что при бомбардировке урана нейтронами возникают элементы средней части периодической таблицы Менделеева, а именно радиоактивные изотопы бария, криптона и некоторых других элементов. К сожалению, эти знания первоначально были использованы в ужасающих, разрушительных целях, ведь началась вторая мировая война и немецкие, а с другой стороны, американские и советские ученые наперегонки занимались разработкой ядерного оружия (в основе которого была ядерная реакция урана), закончившейся печально известными «ядерными грибами» над японскими городами Хиросимой и Нагасаки.

Но вернемся к физике, ядерная реакция урана при расщеплении его ядра обладает просто таки колоссальной энергией, которую наука смогла поставить себе на службу. Как же происходит подобная ядерная реакция? Как мы написали выше, она происходит вследствие бомбардировки ядра атома урана нейтронами, от чего ядро раскалывается, при этом возникает огромная кинетическая энергия, порядка 200 МэВ. Но что самое интересное, в качестве продукта ядерной реакции деления ядра урана от столкновения с нейтроном, возникает несколько свободных новых нейтронов, которые, в свою очередь, сталкиваются с новыми ядрами, раскалывают их, и так далее. В результате нейтронов становится еще больше и еще больше ядер урана раскалывается от столкновений с ними – возникает самая настоящая цепная ядерная реакция.

Вот так она выглядит на схеме.

При этом коэффициент размножения нейтронов должен быть больше единицы, это необходимое условие ядерной реакции подобного вида. Иными словами, в каждом последующем поколении нейтронов, образованных после распада ядер, их должно быть больше, нежели в предыдущем.

Стоит заметить, что по похожему принципу ядерные реакции при бомбардировке могут проходить и во время деления ядер атомов некоторых других элементов, с теми нюансами, что ядра могут бомбардироваться самыми разными элементарными частичками, да и продукты таких ядерных реакций будут разниться, чтобы описать их более детально, нужна целая научная монография

Термоядерные реакции

В основе термоядерных реакций лежат реакции синтеза, то есть, по сути, происходит процесс обратный делению, ядра атомов не раскалываются на части, а наоборот сливаются друг с другом. При этом также происходит выделение большого количества энергии.

Термоядерные реакции, как это следует из самого из названия (термо — температура) могут протекать исключительно при очень высоких температурах. Ведь чтобы два ядра атомов слились, они должны приблизиться на очень близкое расстояние друг к другу, при этом преодолев электрическое отталкивание их положительных зарядов, такое возможно при существовании большой кинетической энергии, которая, в свою очередь, возможна при высоких температурах. Следует заметить, что на происходят термоядерные реакции водорода, впрочем, не только на нем, но и на других звездах, можно даже сказать, что именно она лежит в самой основе их природы всякой звезды.

Ядерные реакции, видео

И в завершение образовательное видео по теме нашей статьи, ядерным реакциям.

процесс взаимодействия ядра с элементарной частицей или другим ядром, в процессе которого происходит изменение строения и свойств ядра . Например, испускание ядром элементарных частиц, его деление, испускание фотонов с высокой энергией (гамма-квантов ). Одним из результатов ядерных реакций является образование изотопов, не существующих в естественных условиях на Земле.

Протекать ядерные реакции могут при бомбардировке атомов быстрыми частицами (протоны , нейтроны , ионы , альфа-частицы ).

Больше полезной информации по разным темам – у нас в телерам .

Ядерные реакции

Одна из первых проведенных людьми ядерных реакций была осуществлена Резерфордом в 1919 году с целью обнаружения протона. Тогда еще не было известно, что ядро состоит их нуклонов (протоны и нейтроны ). При расщеплении многих элементов была обнаружена частица, являющаяся ядром атома водорода. На основе опытов Резерфорд сделал предположение, что данная частица входит в состав всех ядер.

Эта реакция как раз и описывает один из экспериментов ученого. В опыте выше газ (азот ) бомбардируется альфа-частицами (ядра гелия ), которые, выбивая из ядер азота протон , превращают его в изотоп кислорода. Запись этой реакции выглядит следующим образом:

При решении задач на ядерные реакции следует помнить, что при их протекании выполняются классические законы сохранения: заряда , момента импульса , импульса и энергии .

Также существует закон сохранения барионного заряда . Это значит, что число нуклонов, участвующих в реакции, остается неизменным. Если мы посмотрим на реакцию, то увидим, что суммы массовых чисел (цифра сверху) и атомных чисе л (снизу) в правой и левой частях уравнения совпадают.


Кстати! Для всех наших читателей сейчас действует скидка 10% на .

Удельная энергия связи ядер

Как известно, внутри ядра на расстояниях порядка его размера действует одно из фундаментальных физических взаимодействий – сильное взаимодействие . Чтобы его преодолеть и «развалить» ядро, необходимо большое количество энергии.

Энергия связи ядра – минимальная энергия, необходимая, чтобы расщепить ядро атома на составляющие его элементарные частицы.

Масса любого атомного ядра меньше, чем масса составляющих его частиц. Разность масс ядра и его составляющих нуклонов называется дефектом масс:

Числа Z и N легко определяются при помощи таблицы Менделеева , а почитать о том, как это делается, можно . Энергия связи высчитывается по формуле:

Энергия ядерных реакций

Ядерные реакции сопровождаются энергетическими превращениями. Существует величина, называемая энергетическим выходом реакции и определяемая формулой

Дельта M – дефект масс, но в данном случае это разница масс между начальными и конечными продуктами ядерной реакции.


Реакции могут протекать как с выделением энергии, так и с ее поглощением. Такие реакции называются соответственно экзотермическими и эндотермическими .
Чтобы протекала экзотермическая реакция , необходимо выполнение следующего условия: кинетическая энергия начальных продуктов должна быть больше кинетической энергии продуктов, образовавшихся в ходе реакции.

Эндотермическая реакция возможна в случае, когда удельная энергия связи нуклонов в исходных продуктах меньше удельной энергии связи ядер конечных продуктов.

Примеры решения задач по ядерной реакции

А теперь пара практических примеров с решением:



Даже если Вам попалась задачка со звездочкой, стоит помнить – нерешаемых задач не существует. Студенческий сервис поможет выполнить любое задание.

На уроках химии вы познакомились с химическими реакциями, которые ведут к превращениям молекул. Однако атомы при химических реакциях не изменяются. Рассмотрим теперь так называемые ядерные реакции, которые ведут к превращениям атомов. Введём условные обозначения:

Здесь Х – символ химического элемента (как в таблице Менделеева), Z – зарядовое число ядра изотопа, А – массовое число ядра изотопа.

Зарядовое число ядра – это число протонов в ядре, равное номеру элемента в таблице Менделеева. Массовое число ядра – это число входящих в ядро нуклонов (протонов и нейтронов). Зарядовое и массовое числа – физические величины, не совпадающие с зарядом и массой ядра.

Например, символ означает, что ядро этого атома углерода имеет зарядовое число 6 и массовое число 12. Есть и другие изотопы углерода, например . Ядро такого изотопа содержит на один нейтрон больше при том же числе протонов (сравните рисунки).

Первая лабораторная ядерная реакция Резерфорда протекала так:

Ядро атома азота взаимодействовало с a -частицей (ядром атома гелия). При этом получилось ядро фтора – неустойчивый промежуточный продукт реакции. А затем из него образовались ядра кислорода и водорода, то есть произошло превращение одних химических элементов в другие.

По результатам этой ядерной реакции составим следующую таблицу.

Из сравнения клеток таблицы видно, что суммы массовых чисел, а также суммы зарядовых чисел до и после ядерной реакции попарно равны. Эксперименты показывают, что для всех ядерных реакций выполняется закон сохранения зарядового и массового чисел: суммы зарядовых и массовых чисел частиц до и после ядерной реакции попарно равны.

Большинство ядерных реакций заканчивается после образования новых ядер. Однако существуют реакции, продукты которых вызывают новые ядерные реакции, называемые цепными ядерными реакциями. Примером служит реакция деления ядер урана-235 (см. рисунок). Когда в ядро урана попадает нейтрон, оно распадается на два других ядра и 2-3 новых нейтрона. Эти нейтроны попадают в другие ядра урана, и цепная реакция продолжается. Такая ситуация является идеальной. На самом деле многие образовавшиеся нейтроны вылетают за пределы вещества, поэтому не могут быть поглощены ураном.

Однако при высокой степени чистоты урана, то есть при большой его массовой доле, а также при его компактном размещении вероятность захвата нейтрона соседним ядром возрастает. Минимальная масса радиоактивного вещества, при которой возникает цепная реакция, называется критической массой . Для чистого урана-235 – это несколько десятков килограммов. Неуправляемая цепная реакция протекает очень быстро, представляя собой взрыв. Для её применения в мирных целях необходимо сделать реакцию управляемой, что достигается в специальном устройстве – ядерном реакторе (см. § 15-и).

Ядерные реакции очень часты в природе. Например, более половины элементов таблицы Менделеева имеют радиоактивные изотопы.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ