Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

На поверхность тела, которое находится в жидкости или газе действуют силы давления. Известно, что давление увеличивается с увеличением глубины погружения. Значит, что силы давления, которые действуют на нижнюю часть тела и направлены вверх больше по модулю, чем силы, которые действуют на верхнюю часть тела и направлены вниз.

Определение и формула силы выталкивания

Определение

Равнодействующую сил давления на тело, которое погружено в жидкость или газ называют выталкивающей силой . Выталкивающая сила может быть больше, чем сила тяжести, которая действует на тело. Силы выталкивания появляются и в том случае,если тело находится в жидкости или газе частично.

Если тело, находящееся в жидкости оставить в покое, то оно тонет, находится в равновесии или всплывает на поверхность. Это зависит от соотношения силы тяжести и выталкивающей силы (F A),действующих на тело. В первом случае (тело тонет) mg>F A . Если mg=F A , то тело находится в равновесии. При mg

Закон Архимеда

На тело, погруженное в жидкость или газ, действует сила выталкивания (сила Архимеда F A), равная весу вытесненной им жидкости или газа. В математическом виде данный закон выглядит как:

где – плотность жидкости (газа), в которую погружено тело, g=9,8 м/с 2 – ускорение свободного падения, V – объем тела (его части), которое находится в жидкости (газе). Сила Архимеда приложена к центру тяжести объема части тела, которая находится в жидкости (газе).

Закон Архимеда можно применять для вычисления плотности однородного тела неправильной формы. При этом тело взвешивают два раза: один раз в воздухе, второй раз, погрузив тело в жидкость, плотность которой известна.

Единицы измерения силы выталкивания

Основной единицей измерения силы Архимеда, как и любой силы в системе СИ является: =Н

В СГС: F A ]=дин

1Н= (кг м)/с 2

Примеры решения задач

Пример

Задание. Какова сила выталкивания, которая действует на куб, погруженный в систему жидкостей. Сосуд наполнен водой, поверх воды налит керосин. Граница раздела жидкостей проходит посередине грани куба. Плотность воды считайте равной 1 =10 3 кг/м 3 , плотность керосина равна 2 =0,81 10 3 кг/м 3 . Сторона куба равна a=0,1 м.

Решение. Сделаем рисунок.

Сила выталкивания, которая действует со стороны воды, на половину куба равна:

Сила выталкивания, которая действует со стороны керосина, на половину куба равна:

Обе силы направлены вверх. Приложены они к разным точкам (центрам масс объемов тел, погруженных в соответствующие жидкости), при суммировании векторы можно перенести в одну точку параллельно самим себе. Получим, результирующая сила выталкивания равна:

Подставим компоненты силы (1.2), (1.3) в выражение (1.1), имеем:

Проведем вычисления:

Ответ. Ответ: F A =8,8 Н

Пример

Задание. Какова плотность камня, если его вес в воздухе 3,2 Н, а вес в воде 1,8 Н.

Решение. Вес камня в воздухе:

где – плотность камня, V – объем камня. Взвешивая камень в воде, получаем вес камня в жидкости, равный.

Плавучесть – это выталкивающая сила, действующая на тело, погруженное в жидкость (или газ), и направленная противоположно силе тяжести. В общих случаях выталкивающая сила может быть вычислена по формуле: F b = V s × D × g, где F b - выталкивающая сила; V s - объем части тела, погруженной в жидкость; D – плотность жидкости, в которую погружают тело; g – сила тяжести.

Шаги

Вычисление по формуле

    Найдите объем части тела, погруженной в жидкость (погруженный объем). Выталкивающая сила прямо пропорциональна объему части тела, погруженной в жидкость. Другими словами, чем больше погружается тело, тем больше выталкивающая сила. Это означает, что даже на тонущие тела действует выталкивающая сила. Погруженный объем должен измеряться в м 3 .

    • У тел, которые полностью погружены в жидкость, погруженный объем равен объему тела. У тел, плавающих в жидкости, погруженный объем равен объему части тела, скрытой под поверхностью жидкости.
    • В качестве примера рассмотрим шар, плавающий в воде. Если диаметр шара равен 1 м, а поверхность воды доходит до середины шара (то есть он погружен в воду наполовину), то погруженный объем шара равен его объему, деленному на 2. Объем шара вычисляется по формуле V = (4/3)π(радиус) 3 = (4/3)π(0,5) 3 = 0,524 м 3 . Погруженный объем: 0,524/2 = 0,262 м 3 .
  1. Найдите плотность жидкости (в кг/м 3), в которую погружается тело. Плотность – это отношение массы тела к занимаемому этим телом объему. Если у двух тел одинаковый объем, то масса тела с большей плотностью будет больше. Как правило, чем больше плотность жидкости, в которую погружается тело, тем больше выталкивающая сила. Плотность жидкости можно найти в интернете или в различных справочниках.

    • В нашем примере шар плавает в воде. Плотность воды приблизительно равна 1000 кг/м 3 .
    • Плотности многих других жидкостей можно найти .
  2. Найдите силу тяжести (или любую другую силу, действующую на тело вертикально вниз). Не важно, плавает ли тело или тонет, на него всегда действует сила тяжести. В естественных условиях сила тяжести (а точнее сила тяжести, действующая на тело массой 1 кг) приблизительно равна 9,81 Н/кг. Тем не менее, если на тело действуют и другие силы, например, центробежная сила, такие силы необходимо учесть и вычислить результирующую силу, направленную вертикально вниз.

    • В нашем примере мы имеем дело с обычной стационарной системой, поэтому на шар действует только сила тяжести, равная 9,81 Н/кг.
    • Однако если шар плавает в емкости с водой, которая вращается вокруг некоторой точки, то на шар будет действовать центробежная сила, которая не позволяет шару и воде выплескиваться наружу и которую необходимо учесть в расчетах.
  3. Если у вас есть значения погруженного объема тела (в м 3), плотность жидкости (в кг/м 3) и сила тяжести (или любая другая сила, направленная вертикально вниз), то вы можете вычислить выталкивающую силу. Для этого просто перемножьте указанные выше значения, и вы найдете выталкивающую силу (в Н).

    • В нашем примере: F b = V s × D × g. F b = 0,262 м 3 × 1000 кг/м 3 × 9,81 Н/кг = 2570 Н.
  4. Выясните, будет ли тело плавать или тонуть. По приведенной выше формуле можно вычислить выталкивающую силу. Но, выполнив дополнительные расчеты, вы можете определить, будет ли тело плавать или тонуть. Для этого найдите выталкивающую силу для всего тела (то есть в вычислениях используйте весь объем тела, а не погруженный объем), а затем найдите силу тяжести по формуле G = (масса тела)*(9,81 м/с 2). Если выталкивающая сила больше силы тяжести, то тело будет плавать; если же сила тяжести больше выталкивающей силы, то тело будет тонуть. Если силы равны, то тело обладает «нейтральной плавучестью».

    • Например, рассмотрим 20 килограммовое бревно (цилиндрической формы) с диаметром 0,75 м и высотой 1,25 м, погруженное в воду.
      • Найдите объем бревна (в нашем примере объем цилиндра) по формуле V = π(радиус) 2 (высота) = π(0,375) 2 (1,25) = 0,55 м 3 .
      • Далее вычислите выталкивающую силу: F b = 0,55 м 3 × 1000 кг/м 3 × 9,81 Н/кг = 5395,5 Н.
      • Теперь найдите силу тяжести: G = (20 кг)(9,81 м/с 2) = 196,2 Н. Это значение намного меньше значения выталкивающей силы, поэтому бревно будет плавать.
  5. Используйте описанные выше вычисления для тела, погруженного в газ. Помните, что тела могут плавать не только в жидкостях, но и в газах, которые вполне могут выталкивать некоторые тела, несмотря на очень небольшую плотность газов (вспомните про шар, наполненный гелием; плотность гелия меньше плотности воздуха, поэтому шар с гелием летает (плавает) в воздухе).

    Постановка эксперимента

    1. Поместите небольшую чашку в ведро. В этом простом эксперименте мы покажем, что на тело, погруженное в жидкость, действует выталкивающая сила, так как тело выталкивает объем жидкости, равный погруженному объему тела. Мы также продемонстрируем, как найти выталкивающую силу при помощи эксперимента. Для начала поместите небольшую чашку в ведро (или кастрюлю).

    2. Наполните чашку водой (до краев). Будьте осторожны! Если вода из чашки вылилась в ведро, вылейте воду и начните заново.

      • Для эксперимента предположим, что плотность воды равна 1000 кг/м 3 (только если вы не используете соленую воду или другую жидкость).
      • Для наполнения чашки до краев используйте пипетку.
    3. Возьмите небольшой предмет, который поместится в чашке и не будет поврежден водой. Найдите массу этого тела (в килограммах; для этого взвесьте тело на весах и конвертируйте значение в граммах в килограммы). Затем медленно опустите предмет в чашку с водой (то есть погрузите тело в воду, но при этом не погружайте пальцы). Вы увидите, что некоторое количество воды вылилось из чашки в ведро.

      • В этом эксперименте мы опустим в чашку с водой игрушечный автомобиль массой 0,05 кг. Объем этого автомобиля нам не нужен, чтобы вычислить выталкивающую силу.
    4. При погружении тела в воду оно выталкивает некоторый объем воды (иначе тело не погрузилось бы в воду). Когда тело выталкивает воду (то есть тело действует на воду), на тело начинает действовать выталкивающая сила (то есть вода действует на тело). Вылейте воду из ведра в мерный стакан. Объем воды в мерном стакане должен быть равен объему погруженного тела.

      • Другими словами, если тело плавает, то объем вытесненной жидкости равен погруженному объему тела. Если тело утонуло, то объем вытесненной жидкости равен объему всего тела.

Цели урока: убедиться в существовании выталкивающей силы, осознать причины её возникновения и вывести правила для её вычисления, содействовать формированию мировоззренческой идеи познаваемости явлений и свойств окружающего мира.

Задачи урока: Работать над формированием умений анализировать свойства и явления на основе знаний, выделять главную причину, влияющую на результат. Развивать коммуникативные умения. На этапе выдвижения гипотез развивать устную речь. Проверить уровень самостоятельности мышления школьника по применению учащимися знаний в различных ситуациях.

Архимед – выдающийся ученый Древней Греции, родился в 287 году до н.э. в портовом и судостроительном г. Сиракузы на острове Сицилия. Архимед получил блестящее образование у своего отца, астронома и математика Фидия, родственника сиракузского тирана Гиерона, покровительствовавшего Архимеду. В юности провёл несколько лет в крупнейшем культурном центре в Александрии, где у него сложились дружеские отношения с астрономом Кононом и географом-математиком Эратосфеном. Это послужило толчком к развитию его выдающихся способностей. В Сицилию вернулся уже зрелым ученым. Он прославился многочисленными научными трудами главным образом в области физики и геометрии.

Последние годы жизни Архимед был в Сиракузах, осажденных римским флотом и войском. Шла 2-я Пуническая война. И великий ученый, не жалея сил, организовывает инженерную оборону родного города. Он построил множество удивительных боевых машин, топивших вражеские корабли, разносивших их в щепы, уничтожавших солдат. Однако слишком маленьким было войско защитников города по сравнению с огромным римским войском. И в 212 г. до н.э. Сиракузы были взяты.

Гений Архимеда вызывал восхищение у римлян и римский полководец Марцелл приказал сохранить ему жизнь. Но солдат, не знавший в лицо Архимеда, убил его.

Одним из важнейших его открытий стал закон, впоследствии названный законом Архимеда. Существует предание, что идея этого закона посетила Архимеда, когда он принимал ванну, с возгласом “Эврика!” он выскочил из ванны и нагим побежал записывать пришедшую к нему научную истину. Суть этой истины и предстоит выяснить, нужно убедиться в существовании выталкивающей силы, осознать причины её возникновения и вывести правила для её вычисления.

Давление в жидкости или газе зависит от глубины погружения тела и приводит к появлению выталкивающей силы, действующей на тело и направленной вертикально вверх.

Если тело опустить в жидкость или газ, то под действием выталкивающей силы оно будет всплывать из более глубоких слоев в менее глубокие. Выведем формулу для определения силы Архимеда для прямоугольного параллелепипеда.

Давление жидкости на верхнюю грань равно

где: h1 – высота столба жидкости над верхней гранью.

Сила давления на верхнюю грань равна

F1= р1*S = ж*g*h1*S,

Где: S – площадь верхней грани.

Давление жидкости на нижнюю грань равно

где: h2 – высота столба жидкости над нижней гранью.

Сила давления на нижнюю грань равна

F2= p2*S = ж*g*h2*S,

Где: S – площадь нижней грани куба.

Поскольку h2 > h1, то р2 > р1 и F2 > F1.

Разность между силами F2 и F1 равна:

F2 – F1 = ж*g*h2*S – ж*g*h1*S = ж*g*S* (h2 – h1).

Так как h2 – h1 = V – объему тела или части тела, погруженной в жидкость или газ, то F2 – F1 = ж*g*S*H = g* ж*V

Произведение плотности на объем есть масса жидкости или газа. Следовательно, разность сил равна весу вытесненной телом жидкости:

F2 – F1= mж*g = Pж = Fвыт.

Выталкивающая сила есть сила Архимеда, определяющая закон Архимеда

Равнодействующая сил, действующих на боковые грани равна нулю, поэтому в расчетах не участвует.

Таким образом, на тело, погруженное в жидкость или газ, действует выталкивающая сила равная весу вытесненной им жидкости или газа.

Закон Архимеда, впервые был упомянут Архимедом в трактате "О плавающих телах". Архимед писал: "тела более тяжелые, чем жидкость, опущенные в эту жидкость, будут опускаться пока не дойдут до самого низа, и в жидкости станут легче на величину веса жидкости в объеме, равном объему погруженного тела".

Рассмотрим, как зависит сила Архимеда и зависит ли от веса тела, объема тела, плотности тела и плотности жидкости.

Исходя из формулы силы Архимеда, она зависит от плотности жидкости, в которую погружено тело, и от объёма этого тела. Но она не зависит, например, от плотности вещества тела, погружаемого в жидкость, так как эта величина не входит в полученную формулу.
Определим теперь вес тела, погружённого в жидкость (или газ). Так как две силы, действующие на тело в этом случае, направлены в противоположные стороны (сила тяжести вниз, а архимедова сила вверх), то вес тела в жидкости будет меньше веса тела в вакууме на архимедову силу:

P А = m т g – m ж g = g (m т – m ж)

Таким образам, если тело погружено в жидкость (или газ), то оно теряет в своём весе столько, сколько весит вытесненная им жидкость (или газ).

Следовательно:

Сила Архимеда зависит от плотности жидкости и объема тела или его погруженной части и не зависит от плотности тела, его веса и объема жидкости.

Определение силы Архимеда лабораторным методом.

Оборудование: стакан с чистой водой, стакан с соленой водой, цилиндр, динамометр.

Ход работы:

  • определяем вес тела в воздухе;
  • определяем вес тела в жидкости;
  • находим разницу между весом тела в воздухе и весом тела в жидкости.

4. Результаты измерений:

Сделать вывод как зависит сила Архимеда от плотности жидкости.

Выталкивающая сила действует на тела любых геометрических форм. В технике наиболее распространены тела цилиндрической и сферической форм, тела с развитой поверхностью, полые тела в форме шара, прямоугольного параллелепипеда, цилиндра.

Гравитационная сила приложена к центру масс погруженного в жидкость тела и направлена перпендикулярно к поверхности жидкости.

Подъемная сила действует на тело со стороны жидкости, направлена по вертикали вверх, приложена к центру тяжести вытесненного объема жидкости. Тело движется в направлении, перпендикулярном к поверхности жидкости.

Выясним условия плавания тел, которые основываются на законе Архимеда.

Поведение тела, находящегося в жидкости или газе, зависит от соотношения между модулями силы тяжести F т и силы Архимеда F A , которые действуют на это тело. Возможны следующие три случая:

  • F т > F A - тело тонет;
  • F т = F A - тело плавает в жидкости или газе;
  • F т < F A - тело всплывает до тех пор, пока не начнет плавать.

Другая формулировка (где P t - плотность тела, P s - плотность среды, в которую оно погружено):

  • P t > P s - тело тонет;
  • P t = P s - тело плавает в жидкости или газе;
  • P t < P s - тело всплывает до тех пор, пока не начнет плавать.

Плотность организмов живущих в воде почти не отличается от плотности воды, поэтому прочные скелеты им не нужны! Рыбы регулируют глубину погружения, меняя среднюю плотность своего тела. Для этого им необходимо лишь изменить объем плавательного пузыря, сокращая или расслабляя мышцы.

Если тело лежит на дне в жидкости или газе, то сила Архимеда равна нулю.

Закон Архимеда используется в судостроении и воздухоплавании.

Схема плавающего тела:

Линия действия силы тяжести тела G проходит через центр тяжести K (центр водоизмещения) вытесненного объема жидкости. В нормальном положении плавающего тела центр тяжести тела Т и центр водоизмещения K размещены по одной вертикали, называемой осью плаванья.

При качке центр водоизмещения К перемещается в точку К1, и сила тяжести тела и Архимедова сила FА образуют пару сил, которая стремится либо вернуть тело в исходное положение, либо увеличить крен.

В первом случае плавающее тело обладает статической устойчивостью, во втором случае устойчивость отсутствует. Устойчивость тела зависит от взаимного расположения центра тяжести тела Т и метацентра М (точки пересечения линии действия архимедовой силы при крене с осью плавания).

В 1783 году братья МОНГОЛЬФЬЕ изготовили огромный бумажный шар, под которым поместили чашку с горящим спиртом. Шар наполнился горячим воздухом и начал подниматься, достигнув высоты 2000 метров.

Продолжим изучение архимедовой силы. Проделаем опыты. К коромыслу весов подвесим два одинаковых шара. Их вес одинаков, поэтому коромысло находится в равновесии (рис. «а»). Подставим под правый шар пустой стакан. От этого вес шаров не изменится, поэтому равновесие сохранится (рис. «б»).

Второй опыт. Подвесим к динамометру большую картофелину. Вы видите, что её вес равен 3,5 Н. Погрузим картофелину в воду. Мы обнаружим, что её вес уменьшился и стал равен 0,5 Н.

Вычислим изменение веса картофеля:

DW = 3,5 Н – 0,5 Н = 3 Н

Почему же вес картофеля уменьшился именно на 3 Н? Очевидно потому, что в воде на картофель подействовала выталкивающая сила такой же величины. Другими словами, сила Архимеда равна изменению веса т ела:

Эта формула выражает способ измерения архимедовой силы: нужно дважды измерить вес тела и вычислить его изменение. Полученное значение равно силе Архимеда.

Для вывода следующей формулы проделаем опыт с прибором «ведёрко Архимеда». Основные его части следующие: пружина со стрелкой 1, ведёрко 2, тело 3, отливной сосуд 4, стаканчик 5.

Сначала пружину, ведёрко и тело подвешивают к штативу (рис. «а») и отмечают положение стрелки жёлтой меткой. Затем тело помещают в отливной сосуд. По мере погружения тело вытесняет некоторый объём воды , который сливается в стаканчик (рис. «б»). Вес тела становится меньше, пружина сжимается, и стрелка поднимается выше жёлтой метки.

Перельём воду, вытесненную телом, из стаканчика в ведёрко (рис. «в»). Самое удивительное в том, что когда вода будет перелита (рис «г»), стрелка не просто опустится вниз, а укажет точно на жёлтую метку! Значит, вес влитой в ведёрко воды уравновесил архимедову силу . В виде формулы этот вывод запишется так:

Обобщая результаты двух опытов, получим закон Архимеда : выталкивающая сила, действующая на тело в жидкости (или газе), равна весу жидкости (газа), взятой в объёме этого тела и направлена противоположно вектору веса.

В § 3-б мы указали, что сила Архимеда обычно направлена вверх. Поскольку она противонаправлена вектору веса, а он не всегда направлен вниз, архимедова сила также не всегда действует вверх. Например, во вращающейся центрифуге в стакане с водой пузырьки воздуха будут всплывать не вверх, а отклоняясь к оси вращения.

ЗАКОН АРХИМЕДА –закон статики жидкостей и газов, согласно которому на погруженное в жидкость (или газ) тело действует выталкивающая сила, равная весу жидкости в объеме тела.

Тот факт, что на погруженное в воду тело действует некая сила, всем хорошо известен: тяжелые тела как бы становятся более легкими – например, наше собственное тело при погружении в ванну. Купаясь в речке или в море, можно легко поднимать и передвигать по дну очень тяжелые камни – такие, которые не удается можем поднять на суше; то же явление наблюдается, когда по каким-либо причинам выброшенным на берегу оказывается кит – вне водной среды животное не может передвигаться – его вес превосходит возможности его мышечной системы. В то же время легкие тела сопротивляются погружению в воду: чтобы утопить мяч размером с небольшой арбуз требуется и сила, и ловкость; погрузить мяч диаметром полметра скорее всего не удастся. Интуитивно ясно, что ответ на вопрос – почему тело плавает (а другое – тонет), тесно связан с действием жидкости на погруженное в нее тело; нельзя удовлетвориться ответом, что легкие тела плавают, а тяжелые – тонут: стальная пластинка, конечно, утонет в воде, но если из нее сделать коробочку, то она может плавать; при этом ее вес не изменился. Чтобы понять природу силы, действующей на погруженное тело со стороны жидкости, достаточно рассмотреть простой пример (рис. 1).

Кубик с ребром a погружен в воду, причем и вода, и кубик неподвижны. Известно, что давление в тяжелой жидкости увеличивается пропорционально глубине – очевидно, что более высокий столбик жидкости более сильно давит на основание. Гораздо менее очевидно (или совсем не очевидно), что это давление действует не только вниз, но и в стороны, и вверх с той же интенсивностью – это закон Паскаля.

Если рассмотреть силы, действующие на кубик (рис. 1), то в силу очевидной симметрии силы, действующие на противоположные боковые грани, равны и противоположно направлены – они стараются сжать кубик, но не могут влиять на его равновесие или движение. Остаются силы, действующие на верхнюю и на нижнюю грани. Пусть h – глубина погружения верхней грани, r – плотность жидкости, g – ускорение силы тяжести; тогда давление на верхнюю грань равно

r · g · h = p 1

а на нижнюю

r · g (h+a ) = p 2

Сила давления равна давлению, умноженному на площадь, т.е.

F 1 = p 1 · a \up122, F 2 = p 2 · a \up122 , где a – ребро кубика,

причем сила F 1 направлена вниз, а сила F 2 – вверх. Таким образом, действие жидкости на кубик сводится к двум силам – F 1 и F 2 и определяется их разностью, которая и является выталкивающей силой:

F 2 – F 1 =r · g · (h+a ) a \up122 – r gha ·a 2 = pga 2

Сила – выталкивающая, так как нижняя грань, естественно, расположена ниже верхней и сила, действующая вверх, больше, чем сила, действующая вниз. Величина F 2 – F 1 = pga 3 равна объему тела (кубика) a 3 , умноженному на вес одного кубического сантиметра жидкости (если принять за единицу длины 1 см). Другими словами, выталкивающая сила, которую часто называют архимедовой силой, равна весу жидкости в объеме тела и направлена вверх. Этот закон установил античный греческий ученый Архимед , один из величайших ученых Земли.

Если тело произвольной формы (рис. 2) занимает внутри жидкости объем V , то действие жидкости на тело полностью определяется давлением, распределенным по поверхности тела, причем заметим, что это давление совершенно не зависит от материала тела – («жидкости все равно на что давить»).

Для определения результирующей силы давления на поверхность тела нужно мысленно удалить из объема V данное тело и заполнить (мысленно) этот объем той же жидкостью. С одной стороны, есть сосуд с жидкостью, находящейся в покое, с другой стороны внутри объема V – тело, состоящее из данной жидкости, причем это тело находится в равновесии под действием собственного веса (жидкость тяжелая) и давления жидкости на поверхность объема V . Так как вес жидкости в объеме тела равен pgV и уравновешивается равнодействующей сил давления, то величина ее равна весу жидкости в объеме V , т.е. pgV .

Сделав мысленно обратную замену – поместив в объеме V данное тело и отметив, что эта замена никак не скажется на распределении сил давления на поверхность объема V , можно сделать вывод: на погруженное в покоящуюся тяжелую жидкость тело действуют направленная вверх сила (архимедова сила), равная весу жидкости в объеме данного тела.

Аналогично можно показать, что если тело частично погружено в жидкость, то архимедова сила равна весу жидкости в объеме погруженной части тела. Если в этом случае архимедова сила равна весу, то тело плавает на поверхности жидкости. Очевидно, что если при полном погружении архимедова сила окажется меньше веса тела, то оно утонет. Архимед ввел понятие «удельного веса» g , т.е. веса единицы объема вещества: g = pg ; если принять, что для воды g = 1 , то сплошное тело из вещества, у которого g > 1 утонет, а при g < 1 будет плавать на поверхности; при g = 1 тело может плавать (зависать) внутри жидкости. В заключение заметим, что закон Архимеда описывает поведение аэростатов в воздухе (в покое при малых скоростях движения).

Владимир Кузнецов



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ