Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

> Эквипотенциальные линии

Характеристика и свойства линий эквипотенциальной поверхности : состояние электрического потенциала поля, статическое равновесие, формула точечного заряда.

Эквипотенциальные линии поля – одномерные области, где электрический потенциал остается неизменным.

Задача обучения

  • Охарактеризовать форму эквипотенциальных линий для нескольких конфигураций заряда.

Основные пункты

  • Для конкретного изолированного точечного заряда потенциал основывается на радиальной дистанции. Поэтому эквипотенциальные линии выступают круглыми.
  • Если контактирует несколько дискретных зарядов, то их поля пересекаются и демонстрируют потенциал. В итоге, эквипотенциальные линии перекашиваются.
  • Когда заряды распределяются по двум проводящим пластинам в статическом балансе, эквипотенциальные линии практически прямые.

Термины

  • Эквипотенциальный – участок, где каждая точка обладает единым потенциалом.
  • Статическое равновесие – физическое состояние, где все компоненты пребывают в покое, а чистая сила приравнивается к нулю.

Эквипотенциальные линии отображают одномерные участки, где электрический потенциал остается неизменным. То есть, для такого заряда (где бы он ни находился на эквипотенциальной линии) не нужно осуществлять работу, чтобы сдвинуться с одной точки на другую в пределах конкретной линии.

Линии эквипотенциальной поверхности бывают прямыми, изогнутыми или неправильными. Все это основывается на распределении зарядов. Они располагаются радиально вокруг заряженного тела, поэтому остаются перпендикулярными к линиям электрического поля.

Одиночный точечный заряд

Для одиночного точечного заряда формула потенциала:

Здесь наблюдается радиальная зависимость, то есть, независимо от дистанции к точечному заряду потенциал остается неизменным. Поэтому эквипотенциальные линии принимают круглую форму с точечным зарядом в центре.

Изолированный точечный заряд с линиями электрического поля (синий) и эквипотенциальными (зеленый)

Множественные заряды

Если контактирует несколько дискретных зарядов, то мы видим, как перекрываются их поля. Это перекрытие заставляет потенциал объединяться, а эквипотенциальные линии перекашиваться.

Если присутствует несколько зарядов, то эквипотенциальные линии формируются нерегулярно. В точке между зарядами контрольный способен ощущать эффекты от обоих зарядов

Непрерывный заряд

Если заряды расположены на двух проводящих пластинах в условиях статического баланса, где заряды не прерываются и находятся на прямой, то и эквипотенциальные линии выпрямляются. Дело в том, что непрерывность зарядов вызывает непрерывные действия в любой точке.

Если заряды вытягиваются в линию и лишены прерывания, то эквипотенциальные линии идут прямо перед ними. В качестве исключения можно вспомнить только изгиб возле краев проводящих пластин

Непрерывность нарушается ближе к концам пластин, из-за чего на этих участках создается кривизна – краевой эффект.

Для наглядного представления векторных полей используют картину силовых линий. Силовая линия есть воображаемая математическая кривая в пространстве, направление касательной к которой в каждой точке, через которую она проходит, совпадает с направлением вектора поля в той же точке (рис. 1.17).
Рис. 1.17 :
Условие параллельности вектора E → и касательной можно записать в виде равенства нулю векторного произведения E → и элемента дуги d r → силовой линии:

Эквипотенциалью называют поверхность, на которой постоянна величина электрического потенциала ϕ . В поле точечного заряда, как показано на рис. , эквипотенциальными являются сферические поверхности с центров в месте расположения заряда; это видно из уравнения ϕ = q ∕ r = const .

Анализируя геометрию электрических силовых линий и эквипотенциальных поверхностей, можно указать ряд общих свойств геометрии электростатического поля.

Во-первых, силовые линии начинаются на зарядах. Они либо уходят на бесконечность, либо заканчиваются на других зарядах, как на рис. .


Рис. 1.19:

Во-вторых, в потенциальном поле силовые линии не могут быть замкнуты. В противном случае можно было бы указать такой замкнутый контур, что работа электрического поля при перемещении заряда по этому контуру не равна нулю.

В-третьих, силовые линии пересекают любую эквипотенциаль по нормали к ней. Действительно, электрическое поле всюду направлено в сторону скорейшего уменьшения потенциала, а на эквипотенциальной поверхности потенциал постоянен по определению (рис. ).
Рис. 1.20 :
И наконец, силовые линии нигде не пересекаются за исключением точек, где E → = 0 . Пересечение силовых линий означает, что поле в точке пересечения есть неоднозначная функция координат, а вектор E → не имеет определенного направления. Единственным вектором, который обладает таким свойством, является нулевой вектор. Структура электрического поля вблизи точки нуля будет проанализирована в задачах к ?? .

Метод силовых линий, конечно, применим для графического представления любых векторных полей. Так, в главе ?? мы встретим понятие магнитных силовых линий. Однако геометрия магнитного поля совершенно отлична от геометрии электрического поля.


Рис. 1.21 :
Представление о силовых линиях тесно связано с понятием силовой трубки. Возьмем какой-либо произвольный замкнутый контур L и через каждую точку его проведём электрическую силовую линию (рис. ). Эти линии и образуют силовую трубку. Рассмотрим произвольное сечение трубки поверхностью S . Положительную нормаль проведём в ту же сторону, в какую направлены силовые линии. Пусть N — поток вектора E → через сечение S . Нетрудно видеть, что если внутри трубки нет электрических зарядов, то поток N остаётся одним и тем же по всей длине трубки. Для доказательства нужно взять другое поперечное сечение S ′ . По теореме Гаусса, поток электрического поля через замкнутую поверхность, ограниченную боковой поверхностью трубки и сечениями S , S ′ , равен нулю, так как внутри силовой трубки нет электрических зарядов. Поток через боковую поверхность равен нулю, так как вектор E → касается этой поверхности. Следовательно, поток через сечение S ′ численно равен N , но противоположен по знаку. Внешняя нормаль к замкнутой поверхности на этом сечении направлена противоположно n → . Если же направить нормаль в ту же сторону, то потоки через сечения S и S ′ совпадут и повеличине, и по знаку. В частности, если трубка бесконечно тонкая, а сечения S и S ′ нормальны к ней, то

E S = E ′ S ′ .

Получается полная аналогия с течением несжимаемой жидкости. В тех местах, где трубка тоньше, поле E → сильнее. В тех местах, где она шире, поле E → сильнее. Следовательно, по густоте силовых линий можно судить о напряженности электрического поля.

До изобретения компьютеров для экспериментального воспроизведения силовых линий брали стеклянный сосуд с плоским дном и наливали в него жидкость, не проводящую электрически ток, например, касторовое масло или глицерин. В жидкости равномерно размешивали истертые в порошок кристаллики гипса, асбеста или какие-либо другие продолговатые частицы. В жидкость погружали металлические электроды. При соединении с источниками электричества, электроды возбуждали электрическое поле. В этом поле частицы электризуются и, притягиваясь друг к другу разноименно наэлектризованными концами, располагаются в виде цепочек вдоль силовых линий. Картина силовых линий искажается течениями жидкости, вызываемыми силами, действующими на неё в неоднородном электрическом поле.

To Be Done Yet
Рис. 1.22 :
Лучшие результаты получаются по методу, применявшемуся Робертом В. Полем (1884-1976). На стеклянную пластинку наклеиваются электроды из станиоля, между которыми создается электрическое напряжение. Затем на пластинку насыпают, слегка постукивая по ней, продолговатые частички, например, кристаллики гипса. Они располагаются по ней вдоль силовых линий. На рис. ?? изображена полученная таким образом картина силовых линий между двумя разноименно заряженными кружками из станиоля.

▸ Задача 9.1

Записать уравнение силовых линий в произвольных ортогональных координатах.

▸ Задача 9.2

Записать уравнение силовых линий в сферических координатах.

Графическое изображение полей, можно составить не только с линиями напряженности, но и с помощью разности потенциалов. Если объединить в электрическом поле точки с равными потенциалами, то мы получим поверхности равного потенциала или как еще их называют эквипотенциальные поверхности. В пересечении с плоскостью чертежа эквипотенциальные поверхности дают эквипотенциальные линии. Изображая эквипотенциальные линии, которые соответствуют различным значениям потенциала, мы получаем наглядную картину, которая отражает, как изменяется потенциал конкретного поля. Перемещение вдоль эквипотенциальной поверхности заряда работы не требует, так как все точки поля по такой поверхности имеют равный потенциал и сила, которая действует на заряд, всегда перпендикулярна перемещению.

Следовательно, линии напряженности всегда перпендикулярны поверхностям с равными потенциалами.

Наиболее наглядная картина поля будет представлена, если изображать эквипотенциальные линии с равными изменениями потенциала, например в 10 В, 20В, 30 В и т.д. В таком случае скорость изменения потенциала будет обратно пропорциональна расстоянию между соседними эквипотенциальными линиями. То есть густота эквипотенциальных линий пропорциональна напряженности поля (чем выше напряженность поля, тем теснее изображаются линии). Зная эквипотенциальные линии, можно построить линии напряженности рассматриваемого поля и наоборот.

Следовательно, изображения полей с помощью эквипотенциальных линий и линий напряженности равнозначны.

Нумерация эквипотенциальных линий на чертеже

Довольно часто эквипотенциальные линии на чертеже нумеруют. Для того, чтобы указать разность потенциалов на чертеже, произвольную линию обозначают цифрой 0, возле всех остальных линий расставляют цифры 1,2,3 и т.д. Эти цифры указывают разность потенциалов в вольтах избранной эквипотенциальной линии и линии, которую выбрали нулевой. При этом отмечаем, что выбор нулевой линии не важен, так как физический смысл имеет только разность потенциалов для двух поверхностей, и она не зависит от выбора нуля.

Поле точечного заряда с положительным зарядом

Рассмотрим как пример поле точечного заряда, который имеет положительный заряд. Линиями поля точечного заряда являются радиальные прямые, следовательно, эквипотенциальные поверхности - это система концентрических сфер. Линии поля перпендикуляры поверхностям сфер в каждой точке поля. Эквипотенциальными линиями же служат концентрические окружности. Для положительного заряда рисунок 1 представляет эквипотенциальные линии. Для отрицательного заряда рисунок 2 представляет эквипотенциальные линии.

Что очевидно из формулы, которая определяет потенциал поля точечного заряда при нормировке потенциала на бесконечность ($\varphi \left(\infty \right)=0$):

\[\varphi =\frac{1}{4\pi \varepsilon {\varepsilon }_0}\frac{q}{r}\left(1\right).\]

Система параллельных плоскостей, которые находятся на равных расстояниях друг от друга, является эквипотенциальными поверхностями однородного электрического поля.

Пример 1

Задание: Потенциал поля, создаваемый системой зарядов, имеет вид:

\[\varphi =a\left(x^2+y^2\right)+bz^2,\]

где $a,b$ -- постоянные больше нуля. Какова форма имеют эквипотенциальных поверхностей?

Эквипотенциальные поверхности, как мы знаем, -- это поверхности, в которых в любых точках потенциалы равны. Зная вышесказанное, изучим уравнение, которое предложено в условиях задачи. Разделим правую и левую части уравнения $=a\left(x^2+y^2\right)+bz^2,$ на $\varphi $, получим:

\[{\frac{a}{\varphi }x}^2+{\frac{a}{\varphi }y}^2+\frac{b}{\varphi }z^2=1\ \left(1.1\right).\]

Запишем уравнение (1.1) в каноническом виде:

\[\frac{x^2}{{\left(\sqrt{\frac{\varphi }{a}}\right)}^2}+\frac{y^2}{{\left(\sqrt{\frac{\varphi }{a}}\right)}^2}+\frac{z^2}{{\left(\sqrt{\frac{\varphi }{b}}\right)}^2}=1\ (1.2)\]

Из уравнения $(1.2)\ $ видно, что заданной фигурой является эллипсоид вращения. Его полуоси

\[\sqrt{\frac{\varphi }{a}},\ \sqrt{\frac{\varphi}{a}},\ \sqrt{\frac{\varphi}{b}}.\]

Ответ: Эквипотенциальная поверхность заданного поля -- эллипсоид вращения с полуосями ($\sqrt{\frac{\varphi }{a}},\ \sqrt{\frac{\varphi }{a}},\ \sqrt{\frac{\varphi }{b}}$).

Пример 2

Задание: Потенциал поля, имеет вид:

\[\varphi =a\left(x^2+y^2\right)-bz^2,\]

где $a,b$ -- $const$ больше нуля. Что представляют собой эквипотенциальные поверхности?

Рассмотрим случай при $\varphi >0$. Приведем уравнение, заданное в условиях задачи к каноническому виду, для этого разделим обе части уравнения на $\varphi ,$ получим:

\[\frac{a}{\varphi }x^2+{\frac{a}{\varphi }y}^2-\frac{b}{\varphi }z^2=1\ \left(2.1\right).\]

\[\frac{x^2}{\frac{\varphi }{a}}+\frac{y^2}{\frac{\varphi }{a}}-\frac{z^2}{\frac{\varphi }{b}}=1\ \left(2.2\right).\]

В (2.2) мы получили каноническое уравнение однополостного гиперболоида. Его полуоси равны ($\sqrt{\frac{\varphi }{a}}\left(действительная\ полуось\right),\ \sqrt{\frac{\varphi }{a}}\left(действительная\ полуось\right),\ \sqrt{\frac{\varphi }{b}}(мнимая\ полуось)$).

Рассмотрим случай, когда $\varphi

Представим $\varphi =-\left|\varphi \right|$ Приведем уравнение, заданное в условиях задачи к каноническому виду, для этого разделим обе части уравнения на минус модуль $\varphi ,$ получим:

\[-\frac{a}{\left|\varphi \right|}x^2-{\frac{a}{\left|\varphi \right|}y}^2+\frac{b}{\left|\varphi \right|}z^2=1\ \left(2.3\right).\]

Перепишем уравнение (1.1) в виде:

\[-\frac{x^2}{\frac{\left|\varphi \right|}{a}}-\frac{y^2}{\frac{\left|\varphi \right|}{a}}+\frac{z^2}{\frac{\left|\varphi \right|}{b}}=1\ \left(2.4\right).\]

Мы получили каноническое уравнение двуполостного гиперболоида, его полуоси:

($\sqrt{\frac{\left|\varphi \right|}{a}}\left(мнимая\ полуось\right),\ \sqrt{\frac{\left|\varphi \right|}{a}}\left(мнимая\ полуось\right),\ \sqrt{\frac{\left|\varphi \right|}{b}}(\ действительная\ полуось)$).

Рассмотрим случай, когда $\varphi =0.$ Тогда уравнение поля имеет вид:

Перепишем уравнение (2.5) в виде:

\[\frac{x^2}{{\left(\frac{1}{\sqrt{a}}\right)}^2}+\frac{y^2}{{\left(\frac{1}{\sqrt{a}}\right)}^2}-\frac{z^2}{{\left(\frac{1}{\sqrt{b}}\right)}^2}=0\left(2.6\right).\]

Мы получили каноническое уравнение прямого круглого конуса, который опирается на эллипс с полуосями $(\frac{\sqrt{b}}{\sqrt{a}}$;$\ \frac{\sqrt{b}}{\sqrt{a}}$).

Ответ: В качестве эквипотенциальных поверхностей для заданного уравнения потенциала мы получили: при $\varphi >0$ -- однополостной гиперболоид, при $\varphi

Эквипотенциальная поверхность эквипотенциа́льная пове́рхность

поверхность, все точки которой имеют один и тот же потенциал. Эквипотенциальная поверхность ортогональна силовым линиям поля. Поверхность проводника в электростатике является эквипотенциальной поверхностью.

ЭКВИПОТЕНЦИАЛЬНАЯ ПОВЕРХНОСТЬ

ЭКВИПОТЕНЦИА́ЛЬНАЯ ПОВЕ́РХНОСТЬ, поверхность, во всех точках которой потенциал (см. ПОТЕНЦИАЛ (в физике)) электрического поля имеет одинаковое значение j= const. На плоскости эти поверхности представляют собой эквипотенциальные линии поля. Используются для графического изображения распределения потенциала.
Эквипотенциальные поверхности замкнуты и не пересекаются. Изображение эквипотенциальных поверхностей осуществляют таким образом, чтобы разности потенциалов между соседними эквипотенциальными поверхностями были одинаковы. В этом случае в тех участках, где линии эквипотенциальных поверхностей расположены гуще, больше напряженность поля.
Между двумя любыми точками на эквипотенциальной поверхности разность потенциалов равна нулю. Это означает, что вектор силы в любой точке траектории движения заряда по эквипотенциальной поверхности перпендикулярен вектору скорости. Следовательно, линии напряженности (см. НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ) электростатического поля перпендикулярны эквипотенциальной поверхности. Другими словами: эквипотенциальная поверхность ортогональна к силовым линиям (см. СИЛОВЫЕ ЛИНИИ) поля, а вектор напряженности электрического поля Е всегда перпендикулярен эквипотенциальным поверхностям и всегда направлен в сторону убывания потенциала. Работа сил электрического поля при любом перемещении заряда по эквипотенциальной поверхности равна нулю, так как?j = 0.
Эквипотенциальными поверхностями поля точечного электрического заряда являются сферы, в центре которых расположен заряд. Эквипотенциальные поверхности однородного электрического поля представляют собой плоскости, перпендикулярные линиям напряженности. Поверхность проводника в электростатическом поле является эквипотенциальной поверхностью.


Энциклопедический словарь . 2009 .

Смотреть что такое "эквипотенциальная поверхность" в других словарях:

    Поверхность, все точки которой имеют один и тот же потенциал. Эквипотенциальная Поверхность ортогональна к силовым линиям поля. Поверхность проводника в электростатике является эквипотенциальной поверхностью … Большой Энциклопедический словарь

    Поверхность, все точки к рой имеют один и тот же потенциал. Напр., поверхность проводника в электростатике Э. п. Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

    эквипотенциальная поверхность - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN surface of equal potentialsequal energy surfaceequipotential… … Справочник технического переводчика

    Эквипотенциальные поверхности электрического диполя (изображены тёмным их сечения плоскостью рисунка; цветом условно передано значение потенциала в разных точках наиболее высокие значения пурпурным и красным, н … Википедия

    эквипотенциальная поверхность - vienodo potencialo paviršius statusas T sritis fizika atitikmenys: angl. equipotential surface vok. Äquipotentialfläche, f rus. эквипотенциальная поверхность, f pranc. surface de potentiel constant, f; surface d’égal potentiel, f; surface… … Fizikos terminų žodynas

    Поверхность равного потенциала, поверхность, все точки которой имеют один и тот же Потенциал. Например, поверхность проводника в электростатике Э. п. В силовом поле Силовые линии нормальны (перпендикулярны) к Э. п … Большая советская энциклопедия

    - (от лат. aequus равный и потенциал) геом. место точек в поле, к рым соответствует одно и то же значение потенциала. Э. п. перпендикулярны силовым линиям. Эквипотенциальной является, напр., поверхность проводника, находящегося в электростатич.… … Большой энциклопедический политехнический словарь

Связь между напряженностью и потенциалом.

Для потенциального поля, между потенциальной (консервативной) силой и потенциальной энергией существует связь

где ("набла") - оператор Гамильтона.

Поскольку то

Знак минус показывает, что вектор Е направлен в сторону убывания потенциала.

Для графического изображения распределения потенциала используются эквипотенциальные поверхности - поверхности во всех точках которых потенциал имеет одно и то же значение.

Эквипотенциальные поверхности обычно проводят так, чтобы разности потенциалов между двумя соседними эквипотенциальными поверхностями были одинаковы. Тогда густота эквипотенциальных поверхностей наглядно характеризует напряженность поля в разных точках. Там, где эти поверхности расположены гуще, напряженность поля больше. На рисунке пунктиром изображены силовые линии, сплошными линиями - сечения эквипотенциальных поверхностей для: положительного точечного заряда (а), диполя (б), двух одноименных зарядов (в), заряженного металлического проводника сложной конфигурации (г).

Для точечного заряда потенциал поэтому эквипотенциальные поверхности - концентрические сферы. С другой стороны, линии напряженности - радиальные прямые. Следовательно, линии напряженности перпендикулярны эквипотенциальным поверхностям.

Можно показать, что во всех случаях вектор Е перпендикулярен эквипотенциальным поверхностям и всегда направлен в сторону убывания потенциала.

Примеры расчета наиболее важных симметричных электростатических полей в вакууме.

1. Электростатическое поле электрического диполя в вакууме.

Электрическим диполем (или двойным электрическим полюсом) называется система двух равных по модулю разноименных точечных зарядов (+q,-q), расстояние l между которыми значительно меньше расстояния до рассматриваемых точек поля (l<< r).

Плечо диполя l - вектор, направленный по оси диполя от отрицательного заряда к положительному и равный расстоянию между ними.

Электрический момент диполя ре - вектор, совпадающий по направлению с плечом диполя и равный произведению модуля заряда |q| на плечо I:

Пусть r - расстояние до точки А от середины оси диполя. Тогда, учитывая что

2)Напряженность поля в точке В на перпендикуляре, восстановленном к оси диполя из его середины при

Точка В равноудалена от зарядов +q и -q диполя, поэтому потенциал поля в точке В равен нулю. Вектор Ёв направлен противоположно вектору l .

3)Во внешнем электрическом поле на концы диполя действует пара сил, которая стремится повернуть диполь таким образом, чтобы электрический момент ре диполя развернулся вдоль направления поля Ё (рис.(а)).



Во внешнем однородном поле момент пары сил равен M = qElsin а или Во внешнем неоднородном поле (рис.(в)) силы, действующие на концы диполя, неодинаковы и их результирующая стремится передвинуть диполь в область поля с большей напряженностью - диполь втягивается в область более сильного поля.

2. Поле равномерно заряженной бесконечной плоскости.

Бесконечная плоскость заряжена с постоянной поверхностной плотностью Линии напряженности перпендикулярны рассматриваемой плоскости и направлены от нее в обе стороны.

В качестве Гауссовой поверхности примем поверхность цилиндра, образующие которого перпендикулярны заряженной плоскости, а основания параллельны заряженной плоскости и лежат по разные стороны от нее на одинаковых расстояниях.

Так как образующие цилиндра параллельны линиям напряженности, то поток вектора напряженности через боковую поверхность цилиндра равен нулю, а полный поток сквозь цилиндр равен сумме потоков сквозь его основания 2ES. Заряд, заключенный внутри цилиндра, равен . По теореме Гаусса откуда:

Е не зависит от длины цилиндра, т.е. напряженность поля на любых расстояниях одинакова по модулю. Такое поле называется однородным.

Разность потенциалов между точками, лежащими на расстояниях х1 и х2 от плоскости, равна

3.Поле двух бесконечных параллельных разноименно заряженных плоскостей с равными по абсолютному значению поверхностными плотностями зарядов σ>0 и - σ.

Из предыдущего примера следует, что векторы напряженности Е 1 и E 2 первой и второй плоскостей равны по модулю и всюду направлены перпендикулярно плоскостям. Поэтому в пространстве вне плоскостей они компенсируют друг друга, а в пространстве между плоскостями суммарная напряженность . Поэтому между плоскостями

(в диэлектрике. ).

Поле между плоскостями однородное. Разность потенциалов между плоскостями.
(в диэлектрике ).

4.Поле равномерно заряженной сферической поверхности.

Сферическая поверхность радиуса R с общим зарядом q заряжена равномерно с поверхностной плотностью

Поскольку система зарядов и, следовательно, само поле центрально-симметрично относительно центра сферы, то линии напряженности направлены радиально.

В качестве Гауссовой поверхности выберем сферу радиуса r, имеющую общий центр с заряженной сферой. Если r>R, то внутрь поверхности попадает весь заряд q. По теореме Гаусса , откуда

При r<=R замкнутая поверхность не содержит внутри зарядов, поэтому внутри равномерно заряженной сферы Е = 0.

Разность потенциалов между двумя точками, лежащими на расстояниях r 1 и r 2 от центра сферы

(r1 >R,r2 >R), равна

Вне заряженной сферы поле такое же, как поле точечного заряда q, находящегося в центре сферы. Внутри заряженной сферы поля нет, поэтому потенциал всюду одинаков и такой же, как на поверхности



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ