Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

«Числовые неравенства» - Если a>b и m<0, то amb, то а в степени n > b в степени n, где n - любое натуральное число. Знание свойств числовых неравенств будет полезно и для исследования функций. Если a>b и c>d, то a+c>b+d. Свойство 5. Свойство 1.

«Решение показательных неравенств» - Структура урока. Когда показательное неравенство не имеет решений? Альберт Эйнштейн. 1 Область определения функции. 3. Промежутки сравнения значений функции с единицей. Убывает на всей области определения, 8. При любых действительных значениях х и у; a>0, a?1; b>0, b?1. План лекции. Как решаются неравенства, сводящиеся к квадратным?

«Решение дробно-рациональных неравенств» - Решите неравенство. Знаменатель. Решение. Выколотые и невыколотые точки. Назовите числа. Числитель и знаменатель. Назовите выколотые и невыколотые точки. Точки. Найти «нули». Луч. Домножать на знаменатель, содержащий неизвестное. Решение дробно-рациональных неравенств. Определить знак. Решите. Выражение.

«Решение систем неравенств» - Закрепление. Записать неравенства, множеством решения которых служат промежутки. Решение систем неравенств. Повторение. Отрезки. Полуинтервалы. Чтобы решить систему линейных неравенств, достаточно решить каждое из входящих в неё неравенство и найти пересечение множеств их решений. Интервалы. Математический диктант.

«Показательные неравенства» - Что нужно учесть при решении показательных неравенств? Решение простейших показательных неравенств. Что нужно учесть при решении простейших показательных неравенств? Решение неравенства. Решение простейших показательных неравенств. Решите неравенство. Знак неравенства. Неравенство, содержащее неизвестную в показателе степени, называется показательным неравенством.

«Числовые неравенства и числовые промежутки» - Самостоятельная работа. Числовой луч. Неравенство. Проверка. Числовые промежутки. Понятие числового промежутка. Числовой отрезок. Множество действительных чисел. Полуинтервал. Изобразите промежутки на координатной прямой. Числовой промежуток. Открытый луч. Назовите промежутки. Множество всех чисел. Число.

Всего в теме 38 презентаций


Обратной стороной равенства выступает неравенство . В этой статье мы введем понятие неравенства, и дадим начальную информацию о них в контексте математики.

Сначала разберем, что такое неравенство, введем понятия не равно, больше, меньше. Дальше поговорим о записи неравенств с помощью знаков не равно, меньше, больше, меньше или равно, больше или равно. После этого затронем основные типы неравенств, дадим определения строгих и нестрогих, верных и неверных неравенств. Дальше мимоходом перечислим основные свойства неравенств. Наконец, остановимся на двойных, тройных и т.д. неравенствах, и разберем, какой смысл они несут в себе.

Навигация по странице.

Что такое неравенство?

Понятие неравенства , как и , связано со сравнением двух объектов. И если равенство характеризуется словом «одинаковые», то неравенство, напротив, говорит о различии сравниваемых объектов. Например, объекты и - одинаковые, про них можно сказать, что они равные. А вот два объекта и отличаются, то есть, они не равны или неравные .

Неравенство сравниваемых объектов познается вместе со смыслом таких слов, как выше, ниже (неравенство по высоте), толще, тоньше (неравенство по толщине), дальше, ближе (неравенство по удаленности от чего-либо), длиннее, короче (неравенство по длине), тяжелее, легче (неравенство по весу), ярче, тусклее (неравенство по яркости), теплее, холоднее и т.п.

Как мы уже отмечали при знакомстве с равенствами, можно говорить как о равенстве двух объектов в целом, так и о равенстве их некоторых характеристик. Это же относится и к неравенствам. В качестве примера приведем два объекта и . Очевидно, они не одинаковые, то есть, в целом они неравные. Они не равны по размеру, также они не равны по цвету, однако, можно говорить о равенстве их форм – они оба являются кругами.

В математике общий смысл неравенства сохраняется. Но в ее контексте речь идет о неравенстве математических объектов: чисел, значений выражений, значений каких-либо величин (длин, весов, площадей, температур и т.п.), фигур, векторов и т.п.

Не равно, больше, меньше

Иногда ценность представляет именно сам факт неравенства двух объектов. А когда сравниваются значения каких-либо величин, то, выяснив их неравенство, обычно идут дальше, и выясняют, какая величина больше , а какая – меньше .

Смысл слов «больше» и «меньше» мы познаем практически с первых дней нашей жизни. На интуитивном уровне мы воспринимаем понятие больше и меньше в плане размера, количества и т.п. А дальше постепенно начинаем осознавать, что при этом фактически речь идет о сравнении чисел , отвечающим количеству некоторых предметов или значениям некоторых величин. То есть, в этих случаях мы выясняем, какое из чисел больше, а какое – меньше.

Приведем пример. Рассмотрим два отрезка AB и CD , и сравним их длины . Очевидно, они не равны, также очевидно, что отрезок AB длиннее отрезка CD . Таким образом, согласно смыслу слова «длиннее», длина отрезка AB больше длины отрезка CD , и в то же время длина отрезка CD меньше длины отрезка AB .

Еще пример. С утра была зафиксирована температура воздуха 11 градусов Цельсия, а в обед – 24 градуса. Согласно , 11 меньше 24 , следовательно, значение температуры с утра было меньше, чем ее значение в обед (температура в обед стала больше, чем была температура с утра).

Запись неравенств с помощью знаков

На письме приняты несколько знаков для записи неравенств. Первый из них – знак не равно , он представляет собой перечеркнутый знак равно: ≠. Знак не равно ставится между неравными объектами. Например, запись |AB|≠|CD| обозначает, что длина отрезка AB не равна длине отрезка CD . Аналогично, 3≠5 – три не равно пяти.

Аналогично используются знак больше > и знак меньше ≤. Знак больше записывается между большим и меньшим объектами, а знак меньше – между меньшим и большим. Приведем примеры использования этих знаков. Запись 7>1 читается как семь больше одного, а записать, что площадь треугольника ABC меньше площади треугольника DEF с использованием знака ≤ можно как SABC≤SDEF .

Также широко в ходу знак больше или равно вида ≥, а также знак меньше или равно ≤. Подробнее об их смысле и назначении поговорим в следующем пункте.

Еще заметим, что алгебраические записи со знаками не равно, меньше, больше, меньше или равно, больше или равно, аналогичные рассмотренным выше, называют неравенствами. Более того, имеет место определение неравенств в смысле вида их записи:

Определение.

Неравенства – это имеющие смысл алгебраические выражения, составленные с использованием знаков ≠, <, >, ≤, ≥.

Строгие и нестрогие неравенства

Определение.

Знаки меньше называют знаками строгих неравенств , а записанные с их помощью неравенства – строгими неравенствами .

В свою очередь

Определение.

Знаки меньше или равно ≤ и больше или равно ≥ называют знаками нестрогих неравенств , а составленные с их использованием неравенства – нестрогими неравенствами .

Сфера применения строгих неравенств понятна из вышеприведенной информации. А для чего нужны нестрогие неравенства? На практике с их помощью удобно моделировать ситуации, которые можно описать фразами «не больше» и «не меньше». Фраза «не больше» по сути означает меньше или столько же, ей отвечает знак меньше или равно вида ≤. Аналогично, «не меньше» значит столько же или больше, ей соответствует знак больше или равно ≥.

Отсюда становится понятно, почему знаки < и > получили название знаков строгих неравенств, а ≤ и ≥ - нестрогих. Первые исключают возможность равенства объектов, а вторые – допускают ее.

В заключение этого пункта покажем пару примеров использования нестрогих неравенств. Например, с помощью знака больше или равно можно записать тот факт, что a является неотрицательным числом, как |a|≥0 . Еще пример: известно, что среднее геометрическое двух положительных чисел a и b меньше или равно их среднему арифметическому, то есть, .

Верные и неверные неравенства

Неравенства могут быть верными или неверными.

Определение.

Неравенство является верным , если оно соответствует введенному выше смыслу неравенства, в противном случае оно является неверным .

Приведем примеры верных и неверных неравенств. Например, 3≠3 – это неверное неравенство, так как числи 3 и 3 равные. Другой пример: пусть S – это площадь некоторой фигуры, тогда S<−7 – неверное неравенство, так как известно, что площадь фигуры по определению выражается неотрицательным числом. И еще пример неверного неравенства: |AB|>|AB| . А вот неравенства −3<12 , |AB|≤|AC|+|BC| и |−4|≥0 – верные. Первое из них отвечает , второе – выражает неравенство треугольника , а третье – согласуется с определением модуля числа.

Отметим, что наряду со словосочетанием «верное неравенство» используются такие словосочетания: «справедливое неравенство», «имеет место неравенство» и т.п., означающие одно и то же.

Свойства неравенств

Согласно тому, как мы ввели понятие неравенства, можно описать основные свойства неравенств . Понятно, что объект не может быть не равен самому себе. В этом состоит первое свойство неравенств. Второе свойство не менее очевидно: если первый объект не равен второму, то второй не равен первому.

Введенные на некотором множестве понятия «меньше» и «больше» задают на исходном множестве так называемые отношения «меньше» и «больше». Это же относится и к отношениям «меньше или равно» и «больше или равно». Они также обладают характерными свойствами.

Начнем со свойств отношений, которым соответствуют знаки < и >. Перечислим их, после чего дадим необходимые комментарии для пояснения:

  • антирефлексивность;
  • антисимметричность;
  • транзитивность.

Свойство антирефлексивности с помощью букв можно записать так: для любого объекта a неравенства a>a и ab , то ba . Наконец, свойство транзитивности состоит в том, что из ab и b>c следует, что a>c . Это свойство также воспринимается достаточно естественно: если первый объект меньше (больше) второго, а второй меньше (больше) третьего, то понятно, что первый объект подавно меньше (больше) третьего.

В свою очередь отношениям «меньше или равно» и «больше или равно» присущи следующие свойства:

  • рефлексивности: имеют место неравенства a≤a и a≥a (так как они включают в себя случай a=a );
  • антисимметричности: если a≤b , то b≥a , и если a≥b , то b≤a ;
  • транзитивности: из a≤b и b≤c следует, что a≤c , а из a≥b и b≥c следует, что a≥c .

Двойные, тройные неравенства и т.д.

Свойство транзитивности, которое мы затронули в предыдущем пункте, позволяет составлять так называемые двойные, тройные и т.д. неравенства, представляющие собой цепочки неравенств. Для примера приведем двойное неравенство a

Теперь разберем, как понимать такие записи. Их следует трактовать в согласии со смыслом содержащихся в них знаков. Например, двойное неравенство a

В заключение заметим, что иногда удобно использовать записи в виде цепочек, содержащих одновременно как знаки равно, не равно, так и знаки строгих и нестрогих неравенств. Например, x=2

Список литературы.

  • Моро М. И. . Математика. Учеб. для 1 кл. нач. шк. В 2 ч. Ч. 1. (Первое полугодие) / М. И. Моро, С. И. Волкова, С. В. Степанова.- 6-е изд. - М.: Просвещение, 2006. - 112 с.: ил.+Прил. (2 отд. л. ил.). - ISBN 5-09-014951-8.
  • Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.

Задача 1. Турист прошёл в первый день более 20 км, а во второй более 25 км, значит, можно утверждать, что за два дня турист прошёл более 45 км. Задача 2. Длина прямоугольника меньше 13 см, а ширина меньше 5 см, значит, можно утверждать, что площадь этого прямоугольника меньше 65 см² При решении различных задач часто приходится складывать или умножать неравенства, т. е. складывать или умножать отдельно левые и правые части неравенств.


B и c > d, то а + с > b + d Примеры: 3 > 2,5 5 > 4 " title="При рассмотрении этих примеров надо применять следующие теоремы о сложении и умножении неравенств: Теорема 1. При сложении неравенств одинакового знака получается неравенство того же знака: если а > b и c > d, то а + с > b + d Примеры: 3 > 2,5 5 > 4 " class="link_thumb"> 3 При рассмотрении этих примеров надо применять следующие теоремы о сложении и умножении неравенств: Теорема 1. При сложении неравенств одинакового знака получается неравенство того же знака: если а > b и c > d, то а + с > b + d Примеры: 3 > 2,5 5 > 4 1,2 6,5 1,8 b и c > d, то а + с > b + d Примеры: 3 > 2,5 5 > 4 "> b и c > d, то а + с > b + d Примеры: 3 > 2,5 5 > 4 1,2 6,5 1,8 b и c > d, то а + с > b + d Примеры: 3 > 2,5 5 > 4 " title="При рассмотрении этих примеров надо применять следующие теоремы о сложении и умножении неравенств: Теорема 1. При сложении неравенств одинакового знака получается неравенство того же знака: если а > b и c > d, то а + с > b + d Примеры: 3 > 2,5 5 > 4 "> title="При рассмотрении этих примеров надо применять следующие теоремы о сложении и умножении неравенств: Теорема 1. При сложении неравенств одинакового знака получается неравенство того же знака: если а > b и c > d, то а + с > b + d Примеры: 3 > 2,5 5 > 4 ">


B, c > d и а, b, c, d положительные числа, тогда а с > b d. Примеры: 3,2 > 3,1 3 > 2 9,6 > 6,2 1,8 b, c > d и а, b, c, d положительные числа, тогда а с > b d. Примеры: 3,2 > 3,1 3 > 2 9,6 > 6,2 1,8 4 Теорема 2. При умножении неравенств одинакового знака, у которых левые и правые части положительны, получается неравенство того же знака: а > b, c > d и а, b, c, d положительные числа, тогда а с > b d. Примеры: 3,2 > 3,1 3 > 2 9,6 > 6,2 1,8 b, то а² > b². а > b а² > b² b, c > d и а, b, c, d положительные числа, тогда а с > b d. Примеры: 3,2 > 3,1 3 > 2 9,6 > 6,2 1,8 b, c > d и а, b, c, d положительные числа, тогда а с > b d. Примеры: 3,2 > 3,1 3 > 2 9,6 > 6,2 1,8 b, то а² > b². а > b а² > b²"> b, c > d и а, b, c, d положительные числа, тогда а с > b d. Примеры: 3,2 > 3,1 3 > 2 9,6 > 6,2 1,8 b, c > d и а, b, c, d положительные числа, тогда а с > b d. Примеры: 3,2 > 3,1 3 > 2 9,6 > 6,2 1,8 title="Теорема 2. При умножении неравенств одинакового знака, у которых левые и правые части положительны, получается неравенство того же знака: а > b, c > d и а, b, c, d положительные числа, тогда а с > b d. Примеры: 3,2 > 3,1 3 > 2 9,6 > 6,2 1,8


B и n натуральное, то Например, из неравенства 5 > 3 следует неравенство 5³ > 3³. Блиц-опрос. Сложить почленное неравенства: 1) 12 > 2,5 и 1 > 313 > 0,5 2) 5 b и n натуральное, то Например, из неравенства 5 > 3 следует неравенство 5³ > 3³. Блиц-опрос. Сложить почленное неравенства: 1) 12 > 2,5 и 1 > 313 > 0,5 2) 5 5 Аналогично, если а, b положительные числа, а > b и n натуральное, то Например, из неравенства 5 > 3 следует неравенство 5³ > 3³. Блиц-опрос. Сложить почленное неравенства: 1) 12 > 2,5 и 1 > 313 > 0,5 2) 5 2 и 0 > 5 4 > 7 b и n натуральное, то Например, из неравенства 5 > 3 следует неравенство 5³ > 3³. Блиц-опрос. Сложить почленное неравенства: 1) 12 > 2,5 и 1 > 313 > 0,5 2) 5 b и n натуральное, то Например, из неравенства 5 > 3 следует неравенство 5³ > 3³. Блиц-опрос. Сложить почленное неравенства: 1) 12 > 2,5 и 1 > 313 > 0,5 2) 5 2 и 0 > 5 4 > 7"> b и n натуральное, то Например, из неравенства 5 > 3 следует неравенство 5³ > 3³. Блиц-опрос. Сложить почленное неравенства: 1) 12 > 2,5 и 1 > 313 > 0,5 2) 5 b и n натуральное, то Например, из неравенства 5 > 3 следует неравенство 5³ > 3³. Блиц-опрос. Сложить почленное неравенства: 1) 12 > 2,5 и 1 > 313 > 0,5 2) 5 title="Аналогично, если а, b положительные числа, а > b и n натуральное, то Например, из неравенства 5 > 3 следует неравенство 5³ > 3³. Блиц-опрос. Сложить почленное неравенства: 1) 12 > 2,5 и 1 > 313 > 0,5 2) 5


2,5 и 8 > 396 > 7,5 2) 5 2 и 30 >5120 > 10 5) 14 > 3 и 0 > 5Умножение невозможно 6) а > 3 и b > 5a b > 15 7) а > 4 и b > 6 Умножение не" title="Блиц-опрос.Выполнить умножение неравенств: 1) 12 > 2,5 и 8 > 396 > 7,5 2) 5 2 и 30 >5120 > 10 5) 14 > 3 и 0 > 5Умножение невозможно 6) а > 3 и b > 5a b > 15 7) а > 4 и b > 6 Умножение не" class="link_thumb"> 6 Блиц-опрос.Выполнить умножение неравенств: 1) 12 > 2,5 и 8 > 396 > 7,5 2) 5 2 и 30 >5120 > 10 5) 14 > 3 и 0 > 5Умножение невозможно 6) а > 3 и b > 5a b > 15 7) а > 4 и b > 6 Умножение невозможно 2,5 и 8 > 396 > 7,5 2) 5 2 и 30 >5120 > 10 5) 14 > 3 и 0 > 5Умножение невозможно 6) а > 3 и b > 5a b > 15 7) а > 4 и b > 6 Умножение не"> 2,5 и 8 > 396 > 7,5 2) 5 2 и 30 >5120 > 10 5) 14 > 3 и 0 > 5Умножение невозможно 6) а > 3 и b > 5a b > 15 7) а > 4 и b > 6 Умножение невозможно"> 2,5 и 8 > 396 > 7,5 2) 5 2 и 30 >5120 > 10 5) 14 > 3 и 0 > 5Умножение невозможно 6) а > 3 и b > 5a b > 15 7) а > 4 и b > 6 Умножение не" title="Блиц-опрос.Выполнить умножение неравенств: 1) 12 > 2,5 и 8 > 396 > 7,5 2) 5 2 и 30 >5120 > 10 5) 14 > 3 и 0 > 5Умножение невозможно 6) а > 3 и b > 5a b > 15 7) а > 4 и b > 6 Умножение не"> title="Блиц-опрос.Выполнить умножение неравенств: 1) 12 > 2,5 и 8 > 396 > 7,5 2) 5 2 и 30 >5120 > 10 5) 14 > 3 и 0 > 5Умножение невозможно 6) а > 3 и b > 5a b > 15 7) а > 4 и b > 6 Умножение не">


4, b > 2, то 2 а b + 8 > 24. Решение. а > 4, b > 2, а b ______, 2 а b________, 2 а b + 8 ________. > 8> 16 > 24 Задача 2. Одна из сторон прямоугольника а больше 2, но меньше 5 ед.; другая сторона b больше 3, но меньше" title="Задача 1. Доказать, что если а > 4, b > 2, то 2 а b + 8 > 24. Решение. а > 4, b > 2, а b ______, 2 а b________, 2 а b + 8 ________. > 8> 16 > 24 Задача 2. Одна из сторон прямоугольника а больше 2, но меньше 5 ед.; другая сторона b больше 3, но меньше" class="link_thumb"> 7 Задача 1. Доказать, что если а > 4, b > 2, то 2 а b + 8 > 24. Решение. а > 4, b > 2, а b ______, 2 а b________, 2 а b + 8 ________. > 8> 16 > 24 Задача 2. Одна из сторон прямоугольника а больше 2, но меньше 5 ед.; другая сторона b больше 3, но меньше 10 ед. Каким числом квадратных единиц может быть площадь S этого прямоугольника? Решение. По условию 2 4, b > 2, то 2 а b + 8 > 24. Решение. а > 4, b > 2, а b ______, 2 а b________, 2 а b + 8 ________. > 8> 16 > 24 Задача 2. Одна из сторон прямоугольника а больше 2, но меньше 5 ед.; другая сторона b больше 3, но меньше"> 4, b > 2, то 2 а b + 8 > 24. Решение. а > 4, b > 2, а b ______, 2 а b________, 2 а b + 8 ________. > 8> 16 > 24 Задача 2. Одна из сторон прямоугольника а больше 2, но меньше 5 ед.; другая сторона b больше 3, но меньше 10 ед. Каким числом квадратных единиц может быть площадь S этого прямоугольника? Решение. По условию 2 4, b > 2, то 2 а b + 8 > 24. Решение. а > 4, b > 2, а b ______, 2 а b________, 2 а b + 8 ________. > 8> 16 > 24 Задача 2. Одна из сторон прямоугольника а больше 2, но меньше 5 ед.; другая сторона b больше 3, но меньше" title="Задача 1. Доказать, что если а > 4, b > 2, то 2 а b + 8 > 24. Решение. а > 4, b > 2, а b ______, 2 а b________, 2 а b + 8 ________. > 8> 16 > 24 Задача 2. Одна из сторон прямоугольника а больше 2, но меньше 5 ед.; другая сторона b больше 3, но меньше"> title="Задача 1. Доказать, что если а > 4, b > 2, то 2 а b + 8 > 24. Решение. а > 4, b > 2, а b ______, 2 а b________, 2 а b + 8 ________. > 8> 16 > 24 Задача 2. Одна из сторон прямоугольника а больше 2, но меньше 5 ед.; другая сторона b больше 3, но меньше">


(больше) и 0,23, 0,54 с строгие неравенства. Наряду со знаками строгих неравенств > и (больше) и 0,23, 0,54 с строгие неравенства. Наряду со знаками строгих неравенств > и 8 Неравенства со знаками > (больше) и 0,23, 0,54 с строгие неравенства. Наряду со знаками строгих неравенств > и (больше) и 0,23, 0,54 с строгие неравенства. Наряду со знаками строгих неравенств > и (больше) и 0,23, 0,54 с строгие неравенства. Наряду со знаками строгих неравенств > и (больше) и 0,23, 0,54 с строгие неравенства. Наряду со знаками строгих неравенств > и (больше) и 0,23, 0,54 с строгие неравенства. Наряду со знаками строгих неравенств > и title="Неравенства со знаками > (больше) и 0,23, 0,54 с строгие неравенства. Наряду со знаками строгих неравенств > и


B или a = b, т. е а не меньше b. Точно так же неравенство a b означает, что a b или a = b, т. е а не меньше b. Точно так же неравенство a b означает, что a 9 Неравенство a b означает, что a > b или a = b, т. е а не меньше b. Точно так же неравенство a b означает, что a b или a = b, т. е а не меньше b. Точно так же неравенство a b означает, что a b или a = b, т. е а не меньше b. Точно так же неравенство a b означает, что a b или a = b, т. е а не меньше b. Точно так же неравенство a b означает, что a b или a = b, т. е а не меньше b. Точно так же неравенство a b означает, что a title="Неравенство a b означает, что a > b или a = b, т. е а не меньше b. Точно так же неравенство a b означает, что a





Записать условие задачи с помощью неравенств. 1)Рост Антона (h cm) не превышает роста Коли, равного 165 см, но больше роста Маши, равного 147 см. 2) Число дней в году (m) не меньше 365 и не больше) Чайник «Тефаль» (модель 208) вмещает (а л) не больше 1,7 л воды. 147____h_____ ____m_____165. а _____1,7.


Блиц-опрос. Записать условие задачи с помощью неравенства: 1) Сумма чисел х и 3 меньше 1 _________ 2) Разность чисел х и 8 больше 19 ________ 3) Произведение чисел 10 и х не больше 15 ________ 4) Утроенная сумма чисел х и 7 не больше числа 15 _________________



Сегодня мы узнаем, как использовать метод интервалов для решения нестрогих неравенств. Во многих учебниках нестрогие неравенства определяются следующим образом:

Нестрогое неравенство - это неравенство вида f (x ) ≥ 0 или f (x ) ≤ 0, которое равносильно совокупности строгого неравенства и уравнения:

В переводе на русский язык это значит, что нестрогое неравенство f (x ) ≥ 0 - это объединение классического уравнения f (x ) = 0 и строгого неравенства f (x ) > 0. Другими словами, теперь нас интересуют не только положительные и отрицательные области на прямой, но и точки, где функция равна нулю .

Отрезки и интервалы: в чем разница?

Прежде чем решать нестрогие неравенства, давайте вспомним, чем интервал отличается от отрезка:

  • Интервал - это часть прямой, ограниченная двумя точками. Но эти точки не принадлежат интервалу. Интервал обозначается круглыми скобками: (1; 5), (−7; 3), (11; 25) и т.д.;
  • Отрезок - это тоже часть прямой, ограниченная двумя точками. Однако эти точки тоже являются частью отрезка. Отрезки обозначаются квадратными скобками: , [−7; 3], и т.д.

Чтобы не путать интервалы с отрезками, для них разработаны специальные обозначения: интервал всегда обозначается выколотыми точками, а отрезок - закрашенными. Например:

На этом рисунке отмечен отрезок и интервал (9; 11). Обратите внимание: концы отрезка отмечены закрашенными точками, а сам отрезок обозначается квадратными скобками. С интервалом все иначе: его концы выколоты, а скобки - круглые.

Метод интервалов для нестрогих неравенств

К чему была вся эта лирика про отрезки и интервалы? Очень просто: для решения нестрогих неравенств все интервалы заменяются отрезками - и получится ответ. По существу, мы просто добавляем к ответу, полученному методом интервалов, границы этих самых интервалов. Сравните два неравенства:

Задача. Решите строгое неравенство:

(x − 5)(x + 3) > 0

Решаем методом интервалов. Приравниваем левую часть неравенства к нулю:

(x − 5)(x + 3) = 0;
x − 5 = 0 ⇒ x = 5;
x + 3 = 0 ⇒ x = −3;

Справа стоит знак плюс. В этом легко в этом убедиться, подставив миллиард в функцию:

f (x ) = (x − 5)(x + 3)

Осталось выписать ответ. Поскольку нас интересуют положительные интервалы, имеем:

x ∈ (−∞; −3) ∪ (5; +∞)

Задача. Решите нестрогое неравенство:

(x − 5)(x + 3) ≥ 0

Начало такое же, как и для строгих неравенств: работает метод интервалов. Приравниваем левую часть неравенства к нулю:

(x − 5)(x + 3) = 0;
x − 5 = 0 ⇒ x = 5;
x + 3 = 0 ⇒ x = −3;

Отмечаем полученные корни на координатной оси:

В предыдущей задаче мы уже выяснили, что справа стоит знак плюс. Напомню, в этом легко убедиться, подставив миллиард в функцию:

f (x ) = (x − 5)(x + 3)

Осталось записать ответ. Поскольку неравенство нестрогое, а нас интересуют положительные значения, имеем:

x ∈ (−∞; −3] ∪ ∪ ∪ , а (−∞; −3] ∪

Задача. Решите неравенство:

x (12 − 2x )(3x + 9) ≥ 0

x (12 − 2x )(3x + 9) = 0;
x = 0;
12 − 2x = 0 ⇒ 2x = 12 ⇒ x = 6;
3x + 9 = 0 ⇒ 3x = −9 ⇒ x = −3.

x ≥ 6 ⇒ f (x ) = x (12 − 2x )(3x + 9) → (+) · (−) · (+) = (−) < 0;
x ∈ (−∞ −3] ∪ .



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ