Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Мицеллы (уменьшительное от лат. mica «частица, крупинка») - частицы в коллоидных системах , состоящие из нерастворимого в данной среде ядра очень малого размера, окружённого стабилизирующей оболочкой адсорбированных ионов и молекул растворителя . Например, мицелла сульфида мышьяка имеет строение:

{(As 2 S 3) m nHS − (n-x)H + } x- хН +

Средний размер мицелл от 10 −5 до 10 −7 см.

Известно, что нерастворимые твёрдые вещества могут образовывать мельчайшие частицы в растворителе (мицеллы). Такие частицы проходят через фильтр и настолько лёгкие, что не выпадают в осадок. Такие частицы называют коллоидными, а растворы - коллоидными растворами (золями). К мицеллам относят также частицы в растворах поверхностно-активных веществ (ПАВ) , называемых лиофильными коллоидами. Например, мицеллы додецилсульфата в воде.

В лиофильных золях мицелла представляет собой ассоциат молекул (агрегаты , состоящие из десятка и сотен амфифильных молекул). В каждой молекуле длинный гидрофобный радикал связан с полярной (гидрофильной) группой. При образовании мицеллы несколько десятков или сотен молекул объединяются так, что гидрофобные радикалы образуют ядро (внутреннюю область), а гидрофильные группы - поверхностный слой мицеллы. Минимальную концентрацию поверхностно-активных веществ в растворе, при которой в системе образуются устойчивые мицеллы, находящиеся в равновесии с неассоциированными молекулами поверхностно-активного вещества, называют критической концентрацией мицеллообразования. Если дисперсионной средой является органическая жидкость, ориентация молекул в мицелле может быть обратной: ядро содержит полярные группы, а гидрофобные радикалы обращены во внешнюю фазу (обратная мицелла) .

Мицеллы могут существовать в состояниях с различными равновесными структурами и в различных внешних формах, устойчивых при различных концентрациях ПАВ в мицеллярном растворе . Такая способность мицелл называется полиморфизмом мицелл .

В лиофобных гидрозолях, стабилизованных электролитами, ядро мицеллы окружено двумя слоями противоположно заряженных ионов, то есть двойным электрическим слоем . Диффузный слой ионов препятствует сближению и агрегированию (сцеплению) частиц.

Примеры

  • Трёхкомпонентная микроэмульсия en , созданная в 1980-х гг. в Университете Нанси I в качестве экспериментального кислородопереносчика , содержала мицеллы в форме эллипсоида с размерами 100×300 и составом en из 2000 молекул ПФД en , окружённых 1200 молекулами ПАВ ; при этом на одну молекулу ПАВ приходилось до 20 присоединённых молекул воды.

См. также

Напишите отзыв о статье "Мицеллы"

Примечания

Литература

Отрывок, характеризующий Мицеллы

– Располагайтесь, мадонна! Надеюсь, хотя бы одно из этих блюд удовлетворит ваш утончённый вкус?..
Я чувствовала себя настолько жутко, что вдруг, неожиданно для себя, захотела расхохотаться... Разве могла я когда-то себе представить, что в один прекрасный день смогу сидеть за одним столом с человеком, которого больше всего на свете желала уничтожить?!. И почувствовав странную неловкость, постаралась тут же заговорить...
– Что побудило вас пригласить меня сегодня, Ваше святейшество? – осторожно спросила я.
– Ваша приятная компания, – рассмеялся Караффа, и чуть подумав, добавил: – Я хотел побеседовать с вами о некоторых, важных для меня вопросах, мадонна, и предпочёл делать это в более приятной для вас обстановке.
Вошёл слуга, и низко поклонившись Караффе, начал пробовать первые блюда. Как же я в тот момент пожалела, что у меня не было с собою знаменитого Флорентийского травяного яда!.. Он был безболезненным и безвкусным, и определению не поддавался... Срабатывал этот яд только лишь через неделю. Им убивали принцев и королей... И он уж точно успокоил бы навсегда сумасшедшего Папу!!!
Я ни за что и никогда не поверила бы, что смогу так легко размышлять об убийстве... Душа медленно каменела, оставляя внутри только лишь место для правосудия. Я жила, чтобы его уничтожить. И не имело значения, как это сделать. В данном случае любые средства были хороши. Главное было Караффу убить. Чтобы не страдали больше невинные люди, чтобы не ходил по земле этот кровожадный, злой человек.
И поэтому я сидела сейчас с ним рядом, с улыбкой принимая угощения, и светски беседуя на самые разные темы... в то же время напряжённо выискивая хоть какую-нибудь слабинку, которая дала бы мне возможность наконец-то избавиться от его «святого» присутствия...
Ужин подходил к середине, а мы всё ещё светски «обсуждали» какие-то редкие книги, музыку и искусство, будто и не было у него на уме какой-то очень серьёзной цели, по причине которой он пригласил меня в свои покои в такой неподходящий, поздний час.
Казалось, Караффа искренне наслаждался общением, вроде-бы начисто позабыв о своём «особо-важном» разговоре. И надо отдать ему должное – собеседником он был, бесспорно, интереснейшим... если забыть о том, кем он являлся на самом деле... Чтобы заглушить в своей душе нарастающую тревогу, я как можно больше шутила. Караффа весело смеялся моим шуткам, в ответ рассказывая другие. Он был предупредительным и приятным. Но, несмотря на всю его светскую галантность, я чувствовала, что ему тоже надоело притворяться... И хотя выдержка Караффы была по-настоящему безупречной, по лихорадочному блеску его чёрных глаз я понимала – всё наконец-то подходило к развязке... Воздух вокруг нас буквально «трещал» от нарастающего ожидания. Беседа постепенно измельчала, переходя на обмен простыми светскими репликами. И наконец-то Караффа начал...
– Я нашёл книги вашего деда, мадонна. Но там не оказалось интересующих меня знаний. Стоит ли снова задавать вам тот же вопрос, Изидора? Вы ведь знаете, что меня интересует, не правда ли?
Именно это я и ожидала...
– Я не могу дать вам бессмертие, Ваше святейшество, как не могу и научить этому вас. У меня нет этого права... Я не вольна в своих желаниях...
Конечно же, то была чистейшая ложь. Но разве я могла поступать иначе?!.. Караффа прекрасно всё это знал. И, конечно же, снова собирался меня ломать... Больше всего на свете ему нужен был древний секрет, который оставила мне, умирая, моя мать. И он ни за что не собирался отступать. Снова пришёл чей-то черёд жестоко платить за моё молчание...
– Подумай, Изидора! Я не хочу причинять тебе зла! – переходя на «ты», вкрадчивым голосом прошептал Караффа. – Почему ты не желаешь помочь мне?! Я ведь не прошу тебя предавать свою мать, или Мэтэору, я прошу тебя научить лишь тому, что знаешь об этом ты сама! Мы могли бы вместе править миром! Я сделал бы тебя королевой королев!.. Подумай, Изидора...
Я понимала, что прямо сейчас произойдёт что-то очень плохое, но лгать у меня просто-напросто не оставалось больше сил...
– Я не помогу вам просто потому, что, живя дольше, чем вам суждено, вы истребите лучшую половину человечества... Именно тех, которые являются самими умными и самыми одарёнными. Вы приносите слишком большое зло, святейшество... И не имеете права жить долго. Простите меня... – и, чуть помолчав, очень тихо добавила. – Да ведь и жизнь наша не всегда измеряется лишь количеством прожитых лет, Ваше святейшество, и вы прекрасно знаете это...

Контрольная работа

вариант № 3


Зависимость типа и размера мицелл от концентрации ПАВ

Многие ПАВ вообще не образуют сферических мицелл, а другие, хотя и образуют, но только в ограниченных концентрационных и температурных интервалах. Можно выделить три типа поведения ПАВ или полярных липидов в зависимости от концентрации.

1. ПАВ хорошо растворимо в воде и физико-химические свойства растворов плавно изменяются от области KKM до насыщения. Такая картина указывает на то, что с увеличением концентрации существенные изменения в структуре мицелл не происходят: мицеллы остаются небольшими и их форма мало отличается от сферической.

2. ПАВ хорошо растворимо в воде, однако при увеличении концентрации наблюдается резкое изменение некоторых свойств системы. В этом случае происходят заметные изменения самоорганизующихся структур.

3. ПАВ плохо растворимо в воде. В этом случае происходит фазовое разделение системы при низких концентрациях ПАВ.

Эти три варианта характеризуются различными областями существования изотропной фазы раствора. В любом случае новая фаза, выделяющаяся при концентрациях выше насыщения, может быть одной из следующих форм:

Жидкокристаллическая фаза,

Твердая фаза ПАВ,

Второй, более концентрированный раствор ПАВ.

Эти фазы сильно различаются по физико-химическим свойствам, поэтому при любом практическом использовании ПАВ важно контролировать структуру фаз. Области существования различных фаз и фазовые равновесия между ними описывают фазовыми диаграммами, которые важны не только для практического применения ПАВ, но и для более глубокого понимания принципов самоорганизации ПАВ.

Короткоцепные ПАВ, например с углеводородными цепями в 8 или 10 атомов углерода, обычно обнаруживают медленное и постепенное изменение свойств растворов без разделения на фазы вплоть до высоких концентраций.

Зависимость относительной вязкости растворов ПАВ от объемной доли сферических мицелл. Кривые соответствуют теоретическим предсказаниям для двух сферических частиц: штриховая линия - не взаимодействующие частицы; сплошная линия - с учетом межмицеллярного взаимодействия. Точки - экспериментальные данные для мицеллярных систем Q2E5 с одинаковым весовым количеством солюбилизированного декана

Вязкость систем плавно изменяется вплоть до высоких концентраций и приблизительно в соответствии с теорией, описывающей поведение сферических частиц. Методами светорассеяния и спектроскопии ЯМР получены прямые доказательства сферичности агрегатов вплоть до приближения к точке фазового перехода. В некоторых случаях деформации мицелл становятся заметными только при объемных долях мицелл порядка 0.3.

Растворы длинноцепочечных ПАВ, например с углеводородными "хвостами" С 3 или более, уже при низких или промежуточных концентрациях обнаруживают резкое увеличение вязкости с ростом концентрации. На рис. представлена зависимость вязкости от концентрации. В этом случае мицеллы растут с увеличением концентрации, причем сначала образуются короткие вытянутые сфероиды или цилиндры, а затем длинные цилиндрические или червеобразные мицеллы.

Третий, встречающийся реже тип поведения - это рост очень длинных червеобразных мицелл, происходящий уже при очень низких концентрациях, иногда лишь немного превышающих ККМ. Рост мицелл обычно происходит в одном измерении с образованием агрегатов с круговым поперечным сечением. Гидрофобное ядро имеет радиус, совпадающий с радиусом сферических мицелл и, следовательно, равный длине вытянутой алкильной цепи молекулы ПАВ. Линейная длина стержнеобразных мицелл может варьироваться в широких пределах, примерно от 10 нм до многих сотен нанометров.

В случае ПАВ, способных к образованию больших мицелл, вязкость быстро увеличивается с ростом концентрации. Зависимость вязкости нулевого сдвига от концентрации.


Сферическая мицелла

При повышении концентрации часто наблюдается переход от сферических агрегатов к длинным стержнеобразным или червеобразным мицеллам.

Зависимость процесса роста мицелл от типа ПАВ

Увеличение размера мицелл характерно для большинства ПАВ. Отметим факторы, влияющие на увеличение размера мицелл ионогенных ПАВ.

1. Стремление к росту резко возрастает с увеличением длины алкильной цепи, короткоцепные ПАВ вообще не обнаруживают склонности к увеличению размера мицелл.

2. Рост мицелл сильно зависит от температуры, ему способствует понижение температуры. Например, в случае бромида гексадецилтриметиламмония размер мицелл увеличивается при 30°С, но этого не происходит при 50°С.

3. В то время как природа противоиона лишь слабо влияет на KKM для данного типа ПАВ, рост мицелл, напротив, существенно зависит от природы противоиона. Эта зависимость определяется полярной группой ПАВ. Например, для бромида гексадецилтриметиламмония характерно увеличение размера мицелл, но его не происходит, если в качестве противоиона выступает хлорид-ион. Свойства щелочных додецилсульфатов также зависят от противоиона: незначительный рост мицелл характерен для Li + , умеренный для Na + и очень существенный для K + или Cs + . Если в качестве полярной группы ПАВ выступает карбоксилат, то для ионов щелочных металлов наблюдается обратная зависимость мицеллярного роста. Органические противоионы, например сали-цилат-ион, индуцируют сильный рост мицелл длинноцепочечных катионных ПАВ при низких концентрациях.


ПАВ и гидрофобизированных водорастворимых полимеров, поскольку повышение температуры индуцирует рост мицелл либо переход от мицелл к везикулам или другим самоассоциированным структурам. 4. Аналогия между взаимодействием ПАВ с поверхностно-активными полимерами и образованием смешанных мицелл Гидрофобизированный водорастворимый полимер (ГП) можно рассматривать как модифицированное ПАВ. Такой...

К разделению на фазы смешанных растворов неионного и ионного полимеров. При добавлении электролитов ингибирование фазового разделения снимается, и в системе наблюдается типичная несовместимость полимеров. Аналогичные эффекты наблюдаются для смешанных растворов полимера с низкомолекулярным ПАВ. Даже введение в молекулы полимера небольшого заряда (за счет введения ионных групп) или сообщение...

Состоят из нерастворимого в данной среде ядра очень малого размера, окруженного стабилизирующей оболочкой адсорбированных ионов и молекул растворителя . Например, мицелла сульфида мышьяка имеет строение:

{(As 2 S 3) m nHS − (n-x)H + } x- хН +

Средний размер мицелл от 10 −5 до 10 −7 см.

К мицеллам относят также частицы в растворах поверхностно-активных веществ (ПАВ) , называемых лиофильными коллоидами. Например, мицеллы додецилсульфата в воде. В лиофильных золях мицелла представляет собой ассоциат молекул (агрегаты , состоящие из десятка и сотен амфильных молекул). В каждой молекуле длинный гидрофобный радикал связан с полярной (гидрофильной) группой. При образовании мицеллы несколько десятков или сотен молекул объединяются так, что гидрофобные радикалы образуют ядро (внутреннюю область), а гидрофильные группы - поверхностный слой мицеллы. Минимальную концентрацию поверхностно-активных веществ в растворе, при которой в системе образуются устойчивые мицеллы, находящиеся в равновесии с неассоциированными молекулами поверхностно-активного вещества, называют критической концентрацией мицеллоообразования. Если дисперсионной средой является органическая жидкость, ориентация молекул в мицелле может быть обратной: ядро содержит полярные группы, а гидрофобные радикалы обращены во внешнюю фазу (обратная мицелла) .

Мицеллы могут существовать в состояниях с различными равновесными структурами и в различных внешних формах, устойчивых при различных концентрациях ПАВ в мицеллярном растворе. Такая способность мицелл называется полиморфизмом мицелл .

В лиофобных гидрозолях, стабилизованных электролитами, ядро мицеллы окружено двумя слоями противоположно заряженных ионов, то есть двойным электрическим слоем . Диффузный слой ионов препятствует сближению и агрегированию (сцеплению) частиц.

Литература

  • Захарченко В. Н. Коллоидная химия: Учеб. для для медико-биолог. спец. вузов. - 2-е изд., перераб. и доп. - М.: Высш. шк., 1989. - 238 с.: ил.
  • Суздалев И. П. Нанотехнология: физико-химия нанокластеров, наноструктур и наноматериалов. - М.: КомКнига, 2006. - 592 с.
  • Evans D., Wennerstrom H. The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet. 2nd ed. - N.Y.: Wiley, 1994. - 672 p.
  • IUPAC. Compendium of Chemical Terminology. 2nd ed. (the «Gold Book») / Compiled by A.D. McNaught, A. Wilkinson. - Oxford: Blackwell Scientific Publications, 1997. XML on-line corrected version: goldbook.iupac.org, 2006. Created by M. Nic, J. Jirat, B. Kosata. Updates compiled by A. Jenkins. Last update 07.09.2009.

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Мицеллы" в других словарях:

    Частицы дисперсной фазы в коллоид. растворах размером от 10 5 до 10 7 см. Состоят из нерастворимого в данной среде ядра, окруженного двойным электрическим слоем ионов. Один слой ионов, т. н. адсорбционный, находится на поверхности ядра, сообщая… … Геологическая энциклопедия

    мицеллы - – сольватированные частицы дисперсной фазы золя, состоящие из твердого агрегата и двойного электрического слоя. Общая химия: учебник / А. В. Жолнин … Химические термины

    мицеллы - Micelles Мицеллы Частицы в коллоидных системах, состоят из нерастворимого в данной среде ядра малого размера, окруженного стабилизирующей оболочкой адсорбированных ионов и молекул растворителя. Например, мицелла сульфида мышьяка имеет… … Толковый англо-русский словарь по нанотехнологии. - М.

    МИЦЕЛЛЫ - (от латинского mica крошка, крупица) частицы малых размеров в жидких коллоидных системах. Представляют собой комплекс из заряженных ионов (двойной электрический слой), уравновешивающих друг друга таким образом, что в целом мицеллы… … Металлургический словарь

Электрокинетические свойства коллоидных систем. Электрофорез, электроосмос. Строение коллидных частиц лиофобных золей, электрокинетический потенциал. Влияние электролитов на величину электрокинетического потенциала. Изоэлектрическое состояние. Устойчивость и коагуляция коллоидных систем. Коагуляция электролитами, правило Шульце-Гарди.

14.1. Строение коллоидных частиц лиофобных золей, электрокинетический потенциал.

С огласно общепринятой мицеллярной теории строения коллоидных растворов, золь (коллоидный раствор) состоит из двух частей: мицелл и интермицеллярной жидкости.

Мицелла – это частица дисперсной фазы золя, окруженная двойным электрическим слоем.

Интермицеллярной (межмицеллярной ) жидкостью называют дисперсионную среду, разделяющую мицеллы, в которой растворены электролиты, неэлектролиты и ПАВ, являющиеся стабилизаторами коллоидной системы.

Мицеллы

Частицы дисперсной фазы золей называют мицеллами. Если исключить влияние растворителя, в котором образуется коллоидная система, то упрощенную схему строения мицеллы золя хлорида серебра (при избытке хлорид-анионов) можно представить следующим образом. Предположим, что золь хлорида серебра получен сливанием сильно разбавленных растворов хлорида калия и нитрата серебра, причем хлорид калия взят в избытке.

При взаимодействии катионов серебра с хлорид-анионами образуются частицы нерастворимого в воде хлорида серебра. Поскольку растворы сильно разбавлены, микрокристаллы получаются коллоидных размеров, очень мелкие. Такой микрокристалл образует ядро мицеллы.

Рост кристалла прекращается, когда в растворе практически до нуля падает концентрация ионов серебра. Но хлорид-анионы присутствуют в избытке. Часть из них адсорбируется на поверхности ядра, достраивая его кристаллическую решетку. Хлорид-анионы в данном случае называют потенциалопределяющими ионами. Именно они обусловливают наличие отрицательного заряда агрегата ядра с избытком ионов С1-. Если бы в растворе присутствовал избыток нитрата серебра, потенциалопределяющими ионами были бы катионы Ag + .

Естественно, после возникновения заряда образовавшаяся частица начинает притягивать из раствора ионы с противоположным знаком - катионы калия (противоионы), образуется так называемый двойной электрический слой. Некоторая часть противоионов очень прочно притягивается к агрегату, образуя адсорбционный слой. Часть мицеллы, включающую ядро, потенциал определяющие ионы и адсорбционный слой, называют гранулой. Ионы К + , которые не входят в адсорбционный слой, слабее связаны с гранулой и могут диссоциировать в раствор. Они составляют диффузный слой противоионов.

В целом мицелла представляет собой электронейтральную частицу, но за счет перехода части ионов диффузного слоя в раствор гранулы имеют на поверхности избыточный отрицательный заряд, который и препятствует их коагуляции в более крупные частицы.

Строение мицеллы можно изобразить с помощью формулы. Последовательные шаги в составлении формулы мицеллы таковы.

    Ядро мицеллы состоит из т частиц AgCl, образующих микрокристалл: m.

    Потенциалопределяющие ионы адсорбируются на поверхности ядра; предположим, что для нашего примера их число равно п: m nСl-.

    Затем следует слой противоионов. Их общее число так же равно п, однако часть (допустим, х) из них образуют диффузный слой, остальные (п - х) вместе с ядром и потенциалопределяющими ионами составляют гранулу. Часть формулы, относящуюся к грануле мицеллы, заключают в фигурные скобки. Заряд гранулы в данной мицелле равен х~. Таким образом, формула мицеллы золя хлорида серебра в избытке хлорид-анионов такова:

{m nCl - (п - х)К + }- х хК +

При этом основу коллоидных частиц составят микрокристаллы труднорастворимого AgCI, включающие в себя m молекул AgCI (а точнее, m пар ионов Ag + и CI ). Эти микрокристаллы называют агрегатами . Если реакция протекает в присутствии избытка иодида калия, то на поверхности агрегата возникает отрицательно заряженный слой в результате избирательной адсорбции n ионов CI  . Иодид-ионы являются потенциалобразующими ионами (сокращенно ПОИ). Агрегат вместе с потенциалобразующими ионами является частицей твердой фазы и его называют ядром .

Под действием электростатических сил к ядру притягивается n ионов противоположного знака – противоионов , компенсирующих заряд ядра. В данном случае эту роль выполняют ионы K + . Часть противоионов (n - x ), наиболее близко расположенных к ядру, находится в слое жидкости, смачивающем поверхность твердого ядра. Эти ионы испытывают действие не только электростатических, но и ван-дер-ваальсовых сил ядра, поэтому прочно удерживаются около него и образуют так называемый адсорбционный слой противоионов . Ядро с адсорбционным слоем противоионов образует коллоидную частицу. Остальные x противоионов, слабее связанных с ядром (только электростатически), под влиянием теплового движения располагаются в жидкой фазе диффузно (размыто), почему и носят название диффузного слоя . Все это образование вместе и является мицеллой .

Мицеллы золей электронейтральны.

Числа m, n и x могут изменяться в широких пределах в зависимости от условий получения и очистки золя. Обычно m >> n . Ядро вместе с адсорбционным слоем противоионов образуют собственно коллоидную частицу , или гранулу . В отличие от электронейтральной мицеллы коллоидная частица имеет заряд, в данном случае  отрицательный (x ‑).

Граница между коллоидной частицей и диффузным слоем носит название поверхность скольжения. В формуле мицеллы этой границе соответствует фигурная скобка между адсорбционным и диффузным слоями (на рис. 1  сплошная линия).

Пример строения мицеллы для иодида серебра.

Рис. 1. Схема строения мицеллы золя иодида серебра

с отрицательно заряженными частицами.

Граница скольжения обозначает ту геометрическую поверхность, по которой происходит разделение («разрыв») мицеллы на коллоидную частицу и диффузный слой в случае ее перемещения относительно дисперсионной среды (например, при участии мицеллы в броуновском движении или при движении под действием электрического поля).

На границе раздела твердое тело – жидкость возникает двойной электрический слой . Согласно современным представлениям, двойной электрический слой (ДЭС)  это образующийся на границе двух фаз тонкий поверхностный слой из пространственно разделенных электрических зарядов противоположного знака (потенциалобразующих ионов и противоионов). Потенциалобразующие ионы, адсорбирующиеся на твердой поверхности,  это внутренняя обкладка ДЭС. Внешняя обкладка ДЭС (слой противоионов) состоит из двух частей: плотной и диффузной.

Образование двойного слоя ионов приводит к появлению определенных электрических потенциалов на границе раздела твердой и жидкой фаз. Ионы первого слоя (внутренней обкладки), фиксированные на твердой поверхности, придают этой поверхности свой знак заряда и создают на ней так называемый поверхностный или φ-потенциал . Знак φ-потенциала совпадает со знаком заряда потенциалобразующих ионов. Величина φ-потенциала пропорциональна числу зарядов этих ионов на поверхности частиц.

С точки зрения термодинамики, φ-потенциал равен работе переноса единичного (элементарного) заряда из бесконечно удаленной точки объема раствора на поверхность твердой фазы, т. е. представляет собой потенциал твердой поверхности. Прямых методов его измерения не имеется.

Второй потенциал, характеризующий двойной слой ионов, называют электрокинетическим потенциалом или -потенциалом (дзета-потенциалом). Он представляет собой электрический потенциал в двойном слое на границе между коллоидной частицей, способной к движению в электрическом поле и окружающей жидкостью. -потенциал является потенциалом поверхности скольжения . Однако в двойном электрическом слое точное расстояние от твердой поверхности до поверхности скольжения неизвестно. Поэтому приближенно можно принять, что поверхность скольжения проходит по границе между адсорбционным и диффузным слоями противоионов. Следовательно -потенциал близок, хотя и не совсем равен, потенциалу на границе адсорбционного и диффузионного слоев.

Термодинамически ξ-потенциал можно определить как работу, необходимую для переноса единичного заряда из бесконечно удаленного элемента объема раствора на поверхность скольжения. Знак ξ-потенциала обычно совпадает со знаком φ-потенциала. ξ-потенциал является частью φ‑потенциала и всегда меньше, чем φ‑потенциал. Величина ξ-потенциала непосредственно связана с числом противоионов в диффузном слое и изменяется пропорционально этому числу. Можно считать, что с увеличением толщины диффузного слоя ξ‑потенциал повышается. Поскольку электрокинетический потенциал относится к коллоидной частице и обусловливает ее подвижность в электрическом поле, величина этого потенциала может быть измерена экспериментально по скорости движения частиц. Направление же перемещения частиц к катоду или аноду указывает на знак ξ-потенциала.

Благодаря наличию ξ-потенциала на границах скольжения всех частиц дисперсной фазы возникают одноименные заряды и электростатические силы отталкивания противостоят процессам агрегации. Таким образом, ξ-потенциал является одним из основных факторов агрегативной устойчивости гидрофобных золей. Величина, а иногда и знаки φ- и ξ-потенциалов могут изменяться под влиянием внешних воздействий (электролитов, разведения, повышения температуры). Особенно чувствителен к этим факторам ξ-потенциал.

Виды устойчивости дисперсных систем. Лиофобные и лиофильные золи

Устойчивость дисперсных систем – это возможность их нахождения в исходном состоянии неопределенно долгое время.

Устойчивость дисперсных систем может быть:

    К осаждению дисперсной фазы - характеризует способность дисперсной системы сохранять равновесное распределение фазы по объему дисперсионной среды или ее устойчивость к разделению фаз. Это свойство называется седиментационная (кинетическая) устойчивость.

    К агрегации ее частиц.

Агрегативная устойчивость – это способность дисперсной системы сохранять неизменной во времени степень дисперсности, т.е. размеры частиц и их индивидуальность.

Она обусловлена способностью дисперсных систем образовывать агрегаты (т.е. укрупняться). По отношению к агрегации дисперсные системы могут быть устойчивыми кинетически и термодинамически . Термодинамически устойчивые системы образуются в результате самопроизвольного диспергирования одной из фаз, т.е. самопроизвольного образования гетерогенной свободнодисперсной системы. Дисперсные системы также делят на:

    лиофильные, обладающие термодинамической устойчивостью;

    лиофобные, которые термодинамически неустойчивы к агрегации, но могут быть устойчивы кинетически, т.е. обладать значительным временем жизни.

Особенности этих двух видов устойчивости показаны на схеме:

Устойчивость

дисперсных систем

Термодинамическая устойчивость лиофильных систем означает, что они равновесны (энергия Гиббса G  min), обратимы и образуются самопроизвольно, как из макрофаз, так и из истинных растворов. Поскольку образуются гетерогенные системы, то поверхностная энергия должна быть скомпенсирована энтропийной составляющей, т.е. частицы дисперсной системы должны участвовать в молекулярно кинетическом (тепловом) движении. Отсюда следует, что лиофильные системы могут быть только ультромикрогетерогенными, а поверхностное натяжение на границе «частица – среда» должно быть очень малым. Значение поверхностного натяжения, при котором обеспечивается термодинамическая устойчивость дисперсных систем, определяется соотношением Ребиндера – Щукина :

,

где ỵ езразмерный коэффициент;

K – постоянная Больцмана;

а – средний размер частицы.

Расчеты показывают, что межфазное поверхностное натяжение в лиофильных дисперсных системах в зависимости от размеров частиц может иметь значение от 1,410 -7 до 1,410 -3 Дж/м 2 . Типичными представителями лиофильных дисперсных систем являются растворы коллоидных поверхностно активных веществ (ПАВ) (ассоциативные коллоиды) и растворы полимеров (молекулярные коллоиды).

Лиофобные системы термодинамически неустойчивы, т.к. частицы дисперсной фазы склонны к агрегации. Их агрегативная термодинамическая неустойчивость обусловлена избытком поверхностной энергии. Межфазное натяжение в них больше рассчитанного по соотношению Ребиндера – Щукина, поэтому они не могут быть получены самопроизвольным диспергированием. Для их образования должна быть затрачена внешняя энергия. Укрупнение частиц дисперсной фазы при потере агрегативной устойчивости достигается двумя путями:

    Изотермическая перегонка, т.е. растворение мелких и рост крупных частиц в соответствии с уравнением Кельвина;

    За счет слипания частиц, т.е. коагуляцией.

В зависимости от природы среды и концентрации дисперсной фазы эти процессы могут заканчиваться или осаждением, или структурообразованием.

При нарушении агрегативной устойчивости происходит коагуляция .

Правила коагуляции электролитами. Порог коагуляции. Правило Шульце-Гарди. Виды коагуляции: концентрационная и нейтрализационная. Коагуляция смесями электролитов. Явление «неправильные ряды». Механизм и кинетика коагуляции

Коагуляцией называется процесс слипания частиц с образованием крупных агрегатов. В результате коагуляции система теряет свою седиментационную устойчивость, так как частицы становятся слишком крупными и не могут участвовать в броуновском движении.

Коагуляция является самопроизвольным процессом, так как она приводит к уменьшению межфазной поверхности и, следовательно, к уменьшению свободной поверхностной энергии.

Различают две стадии коагуляции.

1 стадия – скрытая коагуляция. На этой стадии частицы укрупняются, но еще не теряют своей седиментационной устойчивости.

2 стадия - явная коагуляция. На этой стадии частицы теряют свою седиментационную устойчивость. Если плотность частиц больше плотности дисперсионной среды, образуется осадок.

Причины коагуляции многообразны. Едва ли существует какое либо внешнее воздействие, которое при достаточной интенсивности не вызывало бы коагуляцию.

Состоят из нерастворимого в данной среде ядра очень малого размера, окруженного стабилизирующей оболочкой адсорбированных ионов и молекул растворителя . Например, мицелла сульфида мышьяка имеет строение:

{(As 2 S 3) m nHS − (n-x)H + } x- хН +

Средний размер мицелл от 10 −5 до 10 −7 см.

К мицеллам относят также частицы в растворах поверхностно-активных веществ (ПАВ) , называемых лиофильными коллоидами. Например, мицеллы додецилсульфата в воде. В лиофильных золях мицелла представляет собой ассоциат молекул (агрегаты , состоящие из десятка и сотен амфильных молекул). В каждой молекуле длинный гидрофобный радикал связан с полярной (гидрофильной) группой. При образовании мицеллы несколько десятков или сотен молекул объединяются так, что гидрофобные радикалы образуют ядро (внутреннюю область), а гидрофильные группы - поверхностный слой мицеллы. Минимальную концентрацию поверхностно-активных веществ в растворе, при которой в системе образуются устойчивые мицеллы, находящиеся в равновесии с неассоциированными молекулами поверхностно-активного вещества, называют критической концентрацией мицеллоообразования. Если дисперсионной средой является органическая жидкость, ориентация молекул в мицелле может быть обратной: ядро содержит полярные группы, а гидрофобные радикалы обращены во внешнюю фазу (обратная мицелла) .

Мицеллы могут существовать в состояниях с различными равновесными структурами и в различных внешних формах, устойчивых при различных концентрациях ПАВ в мицеллярном растворе. Такая способность мицелл называется полиморфизмом мицелл .

В лиофобных гидрозолях, стабилизованных электролитами, ядро мицеллы окружено двумя слоями противоположно заряженных ионов, то есть двойным электрическим слоем . Диффузный слой ионов препятствует сближению и агрегированию (сцеплению) частиц.

Литература

  • Захарченко В. Н. Коллоидная химия: Учеб. для для медико-биолог. спец. вузов. - 2-е изд., перераб. и доп. - М.: Высш. шк., 1989. - 238 с.: ил.
  • Суздалев И. П. Нанотехнология: физико-химия нанокластеров, наноструктур и наноматериалов. - М.: КомКнига, 2006. - 592 с.
  • Evans D., Wennerstrom H. The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet. 2nd ed. - N.Y.: Wiley, 1994. - 672 p.
  • IUPAC. Compendium of Chemical Terminology. 2nd ed. (the «Gold Book») / Compiled by A.D. McNaught, A. Wilkinson. - Oxford: Blackwell Scientific Publications, 1997. XML on-line corrected version: goldbook.iupac.org, 2006. Created by M. Nic, J. Jirat, B. Kosata. Updates compiled by A. Jenkins. Last update 07.09.2009.

Примечания


Wikimedia Foundation . 2010 .

  • Карломан (майордом франков)
  • Молибденит

Смотреть что такое "Мицеллы" в других словарях:

    МИЦЕЛЛЫ - частицы дисперсной фазы в коллоид. растворах размером от 10 5 до 10 7 см. Состоят из нерастворимого в данной среде ядра, окруженного двойным электрическим слоем ионов. Один слой ионов, т. н. адсорбционный, находится на поверхности ядра, сообщая… … Геологическая энциклопедия

    мицеллы - – сольватированные частицы дисперсной фазы золя, состоящие из твердого агрегата и двойного электрического слоя. Общая химия: учебник / А. В. Жолнин … Химические термины

    мицеллы - Micelles Мицеллы Частицы в коллоидных системах, состоят из нерастворимого в данной среде ядра малого размера, окруженного стабилизирующей оболочкой адсорбированных ионов и молекул растворителя. Например, мицелла сульфида мышьяка имеет… … Толковый англо-русский словарь по нанотехнологии. - М.

    МИЦЕЛЛЫ - (от латинского mica крошка, крупица) частицы малых размеров в жидких коллоидных системах. Представляют собой комплекс из заряженных ионов (двойной электрический слой), уравновешивающих друг друга таким образом, что в целом мицеллы… … Металлургический словарь



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ