Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

К нашему времени открыто более 4 тыс. минеральных видов, поэтому для ориентации во всех представленных для нас минералов следует объединять их по общей кристаллической сущности. Один из важных аспектов, которым необходимо руководствоваться при распределении минералов на группы, так это умение отличать их от некристаллических образований. Зная, как устроены кристаллы, особенности их строения, можно суметь предсказать свойства минералов.

Как все начиналось:

Историю развития кристаллографии можно разделить на три основных этапа:

первый -- эмпирический (или собирательный) -- почти до начала XIX в. -- период постепенного накопления фактического материала, выявления и осмысления особенностей кристаллов;

второй -- теоретический (или объяснительный) -- XIX в. -- пери од интенсивного теоретического исследования форм и выявления законов внутреннего строения кристаллов;

третий (современный) -- прогностический -- период быстрого подъема, который можно охарактеризовать как экспериментальный с отчетливым прикладным направлением. Это стадия, раскрывающая перспективы развития данной области знаний.

Кристаллография как наука развивалась неравномерно. С кристаллическим веществом люди столкнулись в глубокой древности. Со времен палеолита они добывали камни, использовали их полезные свойства, удивлялись и поражались их необыкновенной форме, цвету. Порой кристаллам приписывали магическую силу. Например, долгое время кристаллы горного хрусталя принимали за устойчивую форму льда. Да и само слово «кристалл» произошло от греческого хриота ЛЛоа (кристаллос), во времена легендарного древнегреческого поэта Гомера означавшего «прозрачный лед». Аристотель считал горный хрусталь новой формой льда, образовавшейся от «великой стужи». Однако после походов Александра Македонского (356-323до н. э.) в Индию, страну с теплым климатом, где были найдены кристаллы других минералов, образование кристаллов стали связывать не с действием холода, а с силами божественного Солнца. В то время кристаллами называли лишь прозрачные, хорошо ограненные образования (кристаллы аквамарина, кварца и т. д.). Впоследствии этот термин был распространен на все остальные «угловатые» тела, даже непрозрачные, но тоже с природной многогранной формой.

Истоки кристаллографии можно усмотреть ещё в античности, когда греки предприняли первые попытки описания кристаллов. При этом большое значение придавалось их форме. Греками же была создана геометрия, выведены пять Платоновых тел и сконструировано множество многогранников, позволяющих описывать форму кристаллов. Позже выяснилось, что все что растет и движется по горизонтали или под углом к земной поверхности, характеризуется симметрией листка. Следовательно, все, что растет вертикально вектор роста совпадает с единственной осью симметрии конуса, у всего, что растет горизонтально, общим элементом симметрии с вектором силы тяжести будет лишь одна вертикальная плоскость. Так, процесс роста кристаллов, видимая симметрия возникает, когда кристалл растет на вертикальной поверхности.

Данное явление, открытое кристаллографом Г.Г. Леммлейном, позволило геологу А.А. Кораго использовать искаженные кристаллы кварца для прогноза залегания хрусталеносных жил. Кристаллы с симметрией внешней формы характеризуют круто падающие жилы, тогда как более высокая видимая симметрия приурочена к полого падающим или горизонтальным гнездам. Знание законов природной симметрии позволяет многое предвидеть. Например, если сила тяжести не играет главной роли в каком-то процессе, образуются шарообразные формы. Если сила тяжести накладывает ограничения на форму тел, образуются искаженные формы. И наконец, если симметрия среды и собственная симметрия объектов различны, образуются асимметричные тела.

Рождение же кристаллографии как науки связано с работами датского естествоиспытателя Я. Стенопа, который в 1669 г. сформулировал основные понятия о формировании кристаллов: «Рост кристаллов происходит не изнутри, как растений, но путем наложения на внешние плоскости кристалла мельчайших частиц, приносящихся извне жидкостью...».

Эта идея послойного роста кристаллов сохранила свое значение до сих пор. Кроме того, изучая реальные кристаллы кварца, Н. Стеноп обратил внимание на их отклонение от идеальных геометрических многогранников. В последующие годы закон постоянства углов подтверждали независимо друг от друга многие авторы. Окончательно закон постоянства углов утвердился в науке более чем через 100 лет после первого открытия -- в 1783 г., после выхода в свет книги французского минералога Ж.-Б.-Л. Роме де Лиля «Кристаллография, или Описание форм, присущих всем телам минерального царства», в которой он писал: «Грани кристалла могут изменяться по своей форме и относительным размерам, но их взаимные на клоны постоянны и неизменны для каждого рода кристаллов».

Необходимость измерения углов привела к изобретению М. Караижо специального прибора -- прикладного гониометра и зарождению первого кристаллографического метода, позволяющего определять симметрию и идентифицировать вещества, -- метода гониометрии. К этому же времени относится разработка немецким кристаллографом и минералогом К.С. Вейссом (1780-1856) третьего основного закона кристаллографии -- закона зон, устанавливающего зависимость между положением граней и ребер кристалла.

В 1830 г., немецкий профессор минералогии И.Ф. Гесселъ (1796-1872) пишет трактат «Кристаллометрия» с выводом 32 классов симметрии (причем слово «симметрия» им не упоминается). К сожалению, труд Гесселя остался незамеченным. Французский кристаллограф, астроном, морской офицер О. Браве, исходя из однородности кристалла, пришел к выводу, что центры тяжести кирпичиков -- молекул -- располагаются в кристалле по закону трехмерной периодичности в виде узлов пространственной решетки. В 1855 г. Браве вывел 14 типов пространственных решеток, отличающихся друг от друга формой и симметрией. Этим он заложил основу современной структурной кристаллографии. Позднее, исходя из его гипотезы, было доказано, что для кристаллов возможны лишь оси симметрии первого, второго, третьего, четвертого и шестого порядков и никогда не бывает осей пятого и выше шестого порядков, ибо они невозможны в кристаллических решетках. Так был найден важнейший закон, проводящий границу между симметрией кристаллов и симметрией органических образований -- растений и животных. Для кристаллов пятерные оси и оси порядка выше шести запрещены, для органического вещества таких ограничений нет.

Кроме осей симметрии О. Браве ввел еще два геометрических образа -- элемента симметрии, с помощью которых выявляется симметрия кристаллов: центр симметрии и плоскость симметрии и впервые дал определение симметричной фигуры: «Симметричный многогранник... обладает центром симметрии, или одной или несколькими осями симметрии, или одной или несколькими плоскостями симметрии. Многогранник, не обладающий ни центром, ни осями, ни плоскостями симметрии, будет называться асимметричным».

Выводом кристаллографических групп занимались многие ученые, и среди них П. Кюри, который, изучая вопросы симметрии конечных фигур, вывел семь предельных групп симметрии, содержащих оси бесконечных порядков. Кроме того, он показал, что сложные оси симметрии можно получить, комбинируя повороты и отражения в плоскости симметрии. Кюри назвал их зеркальными осями симметрии. В итоге было доказано, что симметрия кристалла строго определяет его внешнюю форму, так как существуют только девять элементов симметрии, с помощью которых можно описать симметрию любого кристаллического многогранника. Дальнейшим шагом в развитии учения о симметрии кристаллов явились труды великого русского кристаллографа Е.С. Федорова, который в 1855 г. в своей первой работе «Начала учения о фигурах» заново дал оригинальный вывод 32 классов симметрии, которым подчиняется внешняя огранка кристаллов. Федоров был первым, кто занялся выяснением геометрических законов, управляющих расположением в кристаллах атомов, молекул и ионов. Федоров считал кристалл состоящим из параллелоэдров -- многогранников, расположенных в параллельном положении друг относительно друга. Каждый параллелоэдр -- это молекула! Таким образом, решетчатое строение по Федорову -- это совокупность кристаллических молекул.

Было положено начало рентгеноструктурному анализу кристаллов работами английского физика У.Л. Брэгга (1890-1971) и русского кристаллографа Г.В. Вульфа(1863-1925), истолковавшими независимо друг от друга явление дифракции рентгеновских лучей в кристаллах и предложившими формулу, названную их именами и связавшую длины рентгеновских лучей с межплоскостными расстояниями.

Вслед за открытием дифракции рентгеновских лучей на кристаллах теория пространственной симметрии кристаллов получила блестящее подтверждение в первых структурных работах отца У.Г.Брэгга (1862-1942) и сына У.Л. Брэгга, которые на основании своих опытов расшифровали структуры ряда кристаллических веществ. Одной из первых расшифровок была структура меди. Вслед за ней -- структуры таких простых соединений, как поваренная соль (NaCI), пирит (FeS7), алмаз (С), цинковая обманка (ZnS) и т. д. К середине1920-хгг. были расшифрованы структуры более сложных соединений -- силикатов. Благодаря работам Брэггов было определено расположение атомов в пространстве, межатомные расстояния. В 1920 г. А. Лайде удалось найти геометрический способ определения радиусов ионов, основанный на предположении, что размеры анионов значительно превышают размеры катионов и в некоторых ионных кристаллах первые непосредственно контактируют друг с другом. Таким образом, работы Брэггов положили непосредственное начало развитию кристаллохимии.

Почти за 100 лет, прошедшие после 1912 г., в мире расшифрованы сотни тысяч кристаллических структур природных, синтетических, в том числе органических, соединений. Это, безусловно, триумф кристаллографии! И если первоначально кристаллография занимала скромное место среди фундаментальных наук, изучая и описывая главным образом внешнюю форму исключительно кристаллов минералов, являясь как бы служанкой минералогии, то в дальнейшем ее роль возросла, поскольку объектом ее исследований стали не только природные, но и искусственные кристаллы, их внутреннее строение, способы выращивания.

кристаллография хрусталеносный жила гониометр

При этом большое значение придавалось их форме. Греками же была создана геометрия, выведены пять платоновых тел и сконструировано множество многогранников, позволяющих описывать форму кристаллов.

Первым в России предпринял точные кристаллографические исследования Н. И. Кокшаров , а получил полную классификацию кристаллографической группы Е. С. Фёдоров .

Основные понятия кристаллографии

Для описания симметрии многограниников и кристаллических решеток в кристаллографии установлена следующая иерархия терминов:

  • Три категории симметрии
    • Семь сингоний
    • Шесть кристаллических (кристаллографических) систем
    • 14 решёток Браве
      • 32 класса или вида симметрии

Кроме того, используются термины:

Пирамиды роста

Пирами́ды ро́ста - пирамиды, основаниями которых служат грани кристалла, а общей вершиной - начальная точка роста .

Реальный кристалл во многих случаях целесообразно рассматривать как совокупность пирамид роста, поскольку очень часто физические свойства пирамид роста с основаниями, принадлежащим к различным простым формам , оказываются различными. Это подтверждается существованием у многих природных кристаллов структуры песочных часов, случаями закономерной оптической аномалии у кристаллов кубической системы и пр.

Симметрия

Симме́три́я кристаллов (др.-греч. συμμετρία «соразмерность», от μετρέω - «меряю»)- это закономерная повторяемость в пространстве одинаковых граней, ребер и углов фигуры, которая может совмещаться сама с собой в результате одного или нескольких отражений. Для описания симметрии пользуется воображаемыми образами - точками, прямыми, плоскостями, называемыми элементами симметрии.

Плоскость симметрии (P) - это воображаемая плоскость, которая делит фигуру на две симметрично равные части, расположенные друг относительно друга как предмет и его зеркальное отражение. Ось симметрии (L) - прямая линия, при вращении вокруг которой повторяются равные части фигуры, то есть она самосовмещается. Число совмещений при повороте на 360° определяет порядок оси симметрии (n). Центр симметрии (С) - точка внутри кристалла, в которой пересекаются и делятся пополам все линии, соединяющие соответственные точки на его поверхности.

Вид симметрии

Категория Низшая Средняя Высшая
Сингония Триклинная Моноклинная Ромбическая Тетрагональная Тригональная Гексагональная Кубическая
Примитивный L 1 L 4 L 3 L 6 4L 3 3L 2
Центральный C L 4 PC L 3 C = L i3 L 6 PC 4L 3 3L 2 3PC
Планальный P L 2 2P L 4 4P L 3 3P L 6 6P 3L i4 4L 3 6P
Аксиальный L 2 3L 2 L 4 4L 2 L 3 3L 2 L 6 6L 2 3L 4 4L 3 6L 2
План-аксиальный L 2 PC 3L 2 3PC L 4 4L 2 5PC L 3 3L 2 3PC = L i3 3L 2 3P L 6 6L 2 7PC 3L 4 4L 3 6L 2 9PC
«Инверсионно-примитивный» L i4 L i6 =L 3 +^ P
«Инверсионно-планальный» L i4 2L 2 2P L i6 3L 2 3P

См. также

Примечания

Литература

  • Уэвелль В. История индуктивных наук от древнейшего и до настоящего времени. В трех томах. Т.III. История кристаллографии. СПб.,1869.
  • Шубников А. В. У истоков кристаллографии. М., 1972.-52 с.
  • Шафрановский И. И. История кристаллографии в России. М.- Л.,1962.-416 с.
  • Шафрановский И. И. История кристаллографии (с древнейших времен до начала XIX столетия). Л., «Наука»,1978.-297 с.
  • Шафрановский И. И. Кристаллография в СССР: 1917-1991 / Отв. ред. Н. П. Юшкин. -СПб., 1996.
  • Burke J.G. Origins of the science of crystals. University of California, Los Angeles, 1966. 198 p.

Ссылки


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Кристаллография" в других словарях:

    Кристаллография … Орфографический словарь-справочник

    - (греч., от hrystallos кристалл, и grapho пишу). Описание наружного вида природных кристаллов, часть кристаллогии. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. КРИСТАЛЛОГРАФИЯ греч., от krystallos, кристалл, и… … Словарь иностранных слов русского языка

    - (от кристаллы и греч. grapho пишу, описываю), наука об атомно мол. строении, симметрии, физ. св вах, образовании и росте кристаллов. К. зародилась в древности в связи с наблюдениями над природными кристаллами, имеющими естеств. форму правильных… … Физическая энциклопедия

    Наука о к лах и кристаллическом веществе; делите” на геометрическую, физ. и хим. Геометрическая К. объединяет учение о симметрии (см. Элементы симметрии) и формах кристаллических тел, о геометрических законах построения пространственных решеток… … Геологическая энциклопедия

    КРИСТАЛЛОГРАФИЯ, изучение образования и строения кристаллических веществ. Эта дисциплина охватывает изучение образования кристаллов, химических связей в них, а также физических свойств твердых веществ. В частности, кристаллография занимается… … Научно-технический энциклопедический словарь

    кристаллография - и, ж. cristallographie f., Kristallographie <гр. Наука о кристаллах, их строении и свойствах. БАС 1. Кристаллография. Севастьянов Геогнозия 1810 ч. 1. Роме де Лиль, основатель современной кристаллографи, еще в 80 х гг. 18 столетия. Природа… … Исторический словарь галлицизмов русского языка

    - (от кристаллы и...графия), наука о кристаллическом состоянии вещества. Изучает симметрию, строение, образование и свойства кристаллов. Зародилась в древности и развивалась в тесной связи с минералогией как наука, устанавливающая законы огранения… … Современная энциклопедия

    - (от кристаллы и...графия) наука о кристаллическом состоянии вещества. Изучает симметрию, строение, образование и свойства кристаллов. Зародилась в древности и развивалась в тесной связи с минералогией как наука, устанавливающая законы огранения… … Большой Энциклопедический словарь

ОСНОВЫ КРИСТАЛЛОГРАФИИ И КРИСТАЛЛОХИМИИ

Кристаллография - наука о кристаллах. Она изучает их внешнюю форму, внутреннее строение (структуру), физико-химические свойства, происхождение. Современная кристаллография включает следующие основные разделы: морфология кристаллов (геометрическая кристаллография), кристаллохимия (структурная кристаллография), кристаллофизика, кристаллогенезис (рост кристаллов).

Кристаллическими называются твердые вещества, построенные из материальных частиц - ионов, атомов или молекул, геометрически правильно расположенных в пространстве. Для описания порядка расположения частиц в пространстве их стали отождествлять с точками. Из такого подхода постепенно сформировалось представление о пространственной или кристаллической решетке как о бесконечном трехмерном периодическом образовании (рис.1). В ней выделяют узлы (отдельные точки, центры тяжести атомов и ионов), ряды (ряд - совокупнось узлов, лежащих на одной прямой) и плоские сетки (плоскости проходящие через любые три узла). Таким образом, кристаллическое вещество имеет строго закономерное (решетчатое или ретикулярное) внутреннее строение (от лат. reticulum - сеточка). При благоприятных условиях они могут самоограняться, образуя правильные геометрические многогранники - кристаллы. Геометрически правильная форма кристаллов обусловливается прежде всего их строго закономерным внутренним строением. Сетки кристаллической решетки соответствуют граням реального кристалла, места пересечения сеток - ряды - ребрам кристаллов, а места пересечения ребер - вершинам кристаллов.

Аморфными называются твердые тела, в которых частицы располагаются в пространстве беспорядочно. Иногда их называют минералоидами.

Все кристаллы обладают рядом основных специфических свойств, отличающих их от некристаллических аморфных тел. Такими свойствами являются:

    Однородность строения - одинаковость узора взаимного расположения атомов во всех частях объема его кристаллической решетки

    Анизотропность - различие физических свойств кристаллов (теплопроводность, твердость, упругость и другие) по параллельным и непараллельным направлениям кристаллической решетки. Свойства одинаковы по параллельным направлениям, но неодинаковы по непараллельным направлениям. В противоположность анизотропным, изотропные тела имеют одинаковые свойства во всех направлениях.

    Способность самоограняться . Этим свойством - принимать многогранную форму в результате свободного роста в подходящей среде - обладают только кристаллических вещества.

    Симметричность - это закономерная повторяемость в расположении предметов или их частей на плоскости или в пространстве. Симметрия кристаллов соответствует симметрии их пространственных решеток. Каждый кристалл может быть совмещен сам с собой определенными преобразованиями (поворотами или отражениями), которые называются симметрическими.

1.1. Основы геометрической кристаллографии

1.1.1. Элементы симметрии кристаллов

Изучение кристаллов начинается с рассмотрения их внешней формы. Внешняя форма хорошо сформированных кристаллических многогранников может быть описана с помощью элементов симметрии.

Симметричным считается объект, который может быть совмещен сам с собой определенными преобразованиями: поворотами или (и) отражениями в зеркальной плоскости.

Элементы симметрии - это вспомогательные геометрические образы (плоскости, прямые линии, точки), с помощью которых обнаруживается симметрия фигур.

Рассмотрим элементы симметрии.

Плоскость симметрии - это воображаемая плоскость, которая делит фигуру на две равные части так, что одна из частей является зеркальным отражением другой. Плоскость симметрии обозначается буквой Р (рис.2). Если плоскостей симметрии в данном кристалле несколько, то перед обозначением плоскости ставится их число. Например 3Р (три плоскости симметрии имеет спичечная коробка)(рис.4 ). В кристаллах может быть одна, две, три, четыре, пять, шесть, семь и девять плоскостей симметрии. Теоретически можно доказать, что восьми и более девяти плоскостей симметрии в кристаллах быть не может Многие кристаллы вообще не имеют ни одной плоскости симметрии.

Ось симметрии - воображаемая прямая линия, при повороте вокруг которой всегда на один и тот же угол происходит совмещение равных частей фигуры. Наименьший угол поворота вокруг оси, приводящий к такому совмещению, называется элементарным углом поворота оси симметрии a. Его величина определяет порядок оси симметрии n, который равен числу самосовмещений при полном повороте фигуры на 360 o (n = 360/a).

Оси симметрии обозначаются буквой L с цифровым индексом, указывающим на порядок оси - L n . Доказано, что в кристаллах возможны только оси второго, третьего, четвертого и шестого порядков.

Они обозначаются L 2 , L 3 , L 4 , L 6 . Осей пятого и порядка выше шестого в кристаллах не бывает. Оси третьего L 3 , четвертого L 4 и шестого L 6 порядка принято считать осями высшего порядка.

Центр симметрии (центр инверсии) - это такая точка внутри фигуры при проведении через которую любая прямая встретит на равном от нее расстоянии одинаковые и обратно расположенные части фигуры. Центр симметрии обозначается буквой С (рис.3). Если каждая грань кристалла имеет себе равную и параллельную или обратно параллельную, то данный кристалл обладает центром симметрии. Некоторые кристаллы могут не иметь центра симметрии (рис.5).

Перечень всех элементов симметрии кристалла, записанный в виде их символов, называется формулой симметрии или видом симметрии.

Cтрогий математический анализ (Гессель, 1830, Гадолин, 1867) показал, что существует всего 32 вида симметрии. Это все возможные для кристаллов комбинации элементов симметрии.

32 вида симметрии объединяются в сингонии. Всего различают семь сингоний.

Название "сингония" происходит от греческого " син" - "сходно" и "гон" -"угол". Сингонию кристалла определяют по обязательным и сходным для каждой сингонии элементам симметрии, а также, основываясь на наличии или отсутсвии единичных направлений.

Единичное направление (Е) - это единственное, неповторяющееся какими-либо операциями симметрии данной группы направление в кристаллическом многограннике.

7 сингоний объединены в три категории.

 Средняя категория объединяет тригональную, тетрагональную и гексагональную сингонии. Кристаллы этих сингоний имеют только одну ось симметрии высшего порядка (L 3 , L 4 , L 6), которые совпадают с единственным единичным направлением.

Таблица 1. Названия и формулы 32 видов симметрии.

Сингонии

Формула в символике Браве

Триклинная

Моноклинная

Р; L 2 ; L 2 PC

Ромбическая

L 2 2P; 3L 2 ; 3L 2 3PC

Тригональная

L 3 ; L 3 C; L 3 3P; L 3 3L 2; L 3 3L 2 3PC;

Тетрагональная

L 4 ; L 4 PC; L 4 4P; L 4 4L 2 ; L 4 4L 2 5PC; Li 4 ; Li 4 2L 2 2P

Гексагональная

Li 6 =L 3 P; Li 6 3L 2 3P=L 3 3L 2 4P; L 6 ; L 6 PC; L 6 6P; L 6 6L 2 ; L 6 6L 2 7PC

Кубическая

4L 3 3L 2 ; 4L 3 3L 2 3PC; 4L 3 3L 2 (3Li 4)6P; 3L 4 4L 3 6L 2 ; 3L 4 4L 3 6L 2 9PC

Кристаллография это наука о кристаллах: об их форме, происхождении, структуре, химическом составе и физических особенностях. Она является одной из научных дисциплин геологического цикла, наиболее тесно связанная с минералогией , находящаяся на стыке их и химии, математики, физики, биологии и т. д. Имеет и теоретическое, и прикладное значение.

История

Развитие кристаллографии подразделяют на три этапа: эмпирический (собирательный), теоретический (объяснительный), современный (прогностический).

Первые кристаллографические наблюдения относятся к античным временам. В древней Греции были предприняты первые попытки описания кристаллов с акцентом на их форму. Этому способствовало создание геометрии, пяти платоновых тел и множества многогранников.

В дальнейшем кристаллография развивалась в рамках минералогии в составе единого геологического научного направления. При этом она являлась исключительно прикладной дисциплиной, так как, по утверждению Р.Ж. Гаюи 1974 г., была наукой о законах огранения кристаллов.

И. Кеплера, создавшего в 1611 г. трактат «О шестиугольных снежинках», считают предшественником структурной кристаллографии.

В 1669 г. Я. Стеноп вывел принцип роста кристаллов, в соответствии с которым данный процесс происходит не изнутри, а путем наложения на поверхность приносимых жидкостью извне частиц. Также он отметил отклонение реальных кристаллов от идеальных многогранников.

В том же году Н. Стенсеном был сформулирован «закон постоянства углов кристаллов». В дальнейшем его же выводили многие независимые исследователи.

Термин «кристаллография» для обозначения науки о кристаллах впервые предложил в 1723 г. М. Капеллер. Таким образом, накопление знаний происходило до XIX в.

В качестве самостоятельной дисциплины кристаллография была описана в 1772 г. Ж. Б. Луи Роме-де-Лилем. К тому же, благодаря его трудам, в 1783 г. был окончательно утвержден закон постоянства углов. Так, он отметил, что возможно изменение граней кристаллов по форме и размерам, однако углы их взаимного наклона постоянны для каждого вида.

В начале существования кристаллографии в качестве отдельной научной напдисциплины наиболее интенсивно развивалось ее геометрическое направление.

Для измерения углов кристаллов М. Караижо создал специализированный прибор — прикладной гониометр, на основе чего зародился первый кристаллографический метод — гониометрия.

К.С. Вейссом был выведен закон зон (зависимость между положением ребер и граней), а Рэнэ-Жюст Гаюи сформулировал закон рациональности разрезов по осям, а также открыл плоскости спайности. В то же время последнее открытие было совершено Т. Бергманом.

В 1830 г. И. Гессель и в 1869 г. А. Гадолин определили наличие 32 видов симметрии и подразделили их на 6 сингоний.

В 1855 г. О. Браве вывел 14 типов пространственных решеток, а также ввел два элемента симметрии (центр и плоскость симметрии) и сформулировал определение симметричной фигуры.

П. Кюри определил семь предельных групп симметрии и зеркальные оси симметрии. На основе этого был сделан вывод о том, что симметрия определяет внешнюю форму кристалла, и всего существует девять ее элементов.

В 1855 г. Е.С. Федоров также вывел 32 класса симметрии и занялся нахождением определяющих расположение атомов, ионов, молекул в кристаллах геометрических законов.

В XX в. началось интенсивное развитие физического (кристаллофизики) и химического (кристаллохимии) направлений, благодаря открытию дифракции рентгеновских лучей в кристаллах У.Л. Брэггом и Г.В. Вульфом, созданию метода рентгеноструктурного анализа и первым расшифровкам кристаллических структур в 1913 г. У.Г. и У.Л. Брэггами.

Таким образом, на втором этапе развития кристаллографии происходило исследование форм кристаллов и выяснение законов их строения.

Современная наука

В настоящее время кристаллография наиболее интенсивно развивается в экспериментальном и прикладном направлениях.

Данная дисциплина включает следующие разделы:

  • кристаллофизику - исследует физические особенности кристаллов: оптические, тепловые, механические, электрические,
  • геометрическую - рассматривает их формы, метрические параметры кристаллической решетки, углы и периоды повторяемости элементарной ячейки, устанавливает законы огранения и разрабатывает методы описания,
  • кристаллогенез - изучает формирование и рост кристаллов,
  • кристаллохимию - исследует связь физических особенностей с химическим составом, закономерности расположения атомов в кристаллах, химические связи между ними, атомную структуру,
  • структурную - изучает атомно-молекулярное строение кристаллов,
  • обощенную - использование структурных и симметрийных закономерностей кристаллографии в рассмотрении свойств и строения конденсированного вещества: жидкостей, аморфных тел, полимеров, надмолекулярных структур, биологических макромолекул.

В кристаллографии существует система понятий для дифференциации многогранников и кристаллических решеток. Она включает в иерархическом порядке категории симметрии, сингонии, кристаллографические (кристаллические) системы, решетки Браво, классы (виды) симметрии, пространственные группы.

Основным среди них считают сингонии . Это кристаллографические категории, в которые объединяют кристаллы на основе наличия определенного набора элементов симметрии. Нужно отметить, что существует путаница между терминами «сингония», «система решетки» и «кристаллическая система», в связи с чем часто их применяют как синонимы. Всего существует семь сингоний: триклинная, моноклинная, ромбическая, тригональная, тетрагональная, гексагональная, кубическая. Первые три относятся к низшей категории, вторые три к средней и последняя к высшей. Категории выделяют на основе равенства трансляций либо количества осей высшего порядка.

Теоретическую основу кристаллографии составляет учение о симметрии кристаллов . Изучение процессов их образования, таких как зарождение, молекулярная кинетика движения фазовой границы, массо- и теплоперенос при кристаллизации, формы роста, дефектообразование, осуществляется с позиций физико-химической кинетики, статистической и макроскопической термодинамики.

К прикладным вопросам относят изучение структуры реальных кристаллов, их дефектов, условий формирования, влияния на их свойства, синтеза.

Кристаллографию считают промежуточной дисциплиной. Наиболее тесно она связана с минералогией, так как зародилась в качестве ее раздела. Помимо этого, она связана с петрологией и прочими геологическими дисциплинами . Кристаллография расположена на пересечении геологических наук, органической химии, математики, физики, радиотехники, химии полимеров, акустики, электроники и связана с молекулярной биологией, металловедением, прикладным искусством, материаловедением и т. д. Связь со многими из данных наук обусловлена общностью подхода к атомному строению вещества и близостью дифракционных методик.

Предмет, задачи, методы

Предметом данной науки являются кристаллы. Ее задачи состоят в исследовании их происхождения, структуры, химических и физических особенностей, происходящих в них процессов, взаимодействия с окружающей средой, изменений в результате различных воздействий.

Кроме того, сфера исследования кристаллографии включает анизотропные среды или вещества с близкой к кристаллической атомной упорядоченностью: жидкие кристаллы, кристаллические текстуры и т. д., а также агрегаты из микрокристаллов (поликристаллы, керамики, текстуры). К тому же она занимается внедрением теоретических достижений в практическую сферу.

Одним из специфических методов кристаллографии является гониометрия. Он состоит в применении для описания, объяснения и предсказания особенностей кристаллов и происходящих в них процессов углов между гранями. Также это позволяет идентифицировать кристаллы путем определения симметрии. Особо высоким значением гониометрия обладала до открытия дифракции рентгеновских лучей, так как являлась основным методом кристаллографии.

Помимо этого, к кристаллографическим методам относятся черчение и расчет кристаллов, их выращивание и измерение, оптическое исследование, рентгеноструктурный, кристаллохимический, электронографический анализы, нейтронографию, электронографию, оптическую спектроскопию, электронную микроскопию, электронный парамагнитный резонанс, ядерный магнитный резонанс и др.

Образование и работа

Кристаллографии обучают в рамках минералогии на геологических специальностях. Кроме того, существует отдельная специальность, которая ввиду узкоспецилизированности встречается крайне редко.

Кристаллографы работают в научно-исследовательской сфере в НИИ и лабораториях.

Заключение

Кристаллография изначально являлась исключительно прикладной дисциплиной, достижения которой использовались в ювелирном деле. Самостоятельной наукой она стала в XIX в. В настоящее время сфера исследования кристаллографии включает происхождение, свойства, состав, связь с окружающей средой кристаллов и кристаллоподобных веществ и происходящих в них процессов. Ввиду узкоспециализированности данная специальность встречается крайне редко, а профессия востребована в научно-исследовательской сфере.

2014 - Международный год кристаллографии

2014 год объявлен ООН и ЮНЕСКО Международным годом кристаллографии. Кристаллография и ее достижения, кристаллографическое мышление являются достоянием всей науки и инструментом познания мира. Одним из главных научных прорывов XX века было открытие дифракции рентгеновских лучей М. Лауэ в 1912 г., которое А. Эйнштейн назвал «самым красивым экспериментом XX века». Это открытие, позволяющее «видеть» атомы, послужило огромным импульсом к более глубокому пониманию всех аспектов химии, физики, биологии, минералогии, медицины и науки вообще, которые так или иначе имеют структурную подоплеку.

Сегодня кристаллография - самая широкая научная дисциплина. Нет равных по числу нобелевских премий, которые присуждены ученым, работающим в этой области, и практически нет такой человеческой деятельности, где бы достижения кристаллографии не нашли себе применения. Без знания структуры не были бы достигнуты успехи в микроэлектронике, синтезе новых сегнетоэлектриков, лазерных материалов, органических и высокотемпературных сверхпроводников, твердых электролитов, молекулярных магнетиков, супрамолекулярных и других соединений. Сейчас статью о получении нового соединения или открытии нового минерала без доказательства их строения не примут для публикации ни в одном серьезном научном журнале. Всё более глубокое проникновение в секреты внутреннего строения кристаллов различных классов соединений позволяет осуществлять направленный синтез веществ с желаемыми структурой и свойствами. Отдельным и имеющим большое практическое значение направлением кристаллографии стало выращивание и применение искусственно выращенных кристаллов и изучение процессов их роста и свойств. Кристаллография сумела проникнуть в тайны строения биологических объектов, таких как вирусы, белки и ДНК, что помогло развитию молекулярной биологии и медицины.

К настоящему времени расшифрованы сотни тысяч структур, разработаны новые методы структурной кристаллографии, введены новые источники (электроны, нейтроны, синхротронное излучение), появились точные и производительные автоматические дифрактометры, мощные компьютеры и кристаллографические программы, сроки структурных исследований сократились от нескольких иногда лет до немногих часов. Открыты и изучаются новые, интригующие объекты - несоразмерные фазы, пластические и жидкие кристаллы, твердые ионные проводники, квазикристаллы. Важное значение приобрели исследования распределения электронной плотности в кристаллах и исследование in situ фазовых переходов и структуры кристаллов в экстремальных условиях (при высоких или низких температурах, высоких давлениях).

Нельзя не отметить вклад в кристаллографию отечественных ученых. Одним из соавторов закона о постоянстве двугранных углов кристаллов является М.В. Ломоносов. Е.С. Федоров по праву принадлежит к числу основоположников теоретической кристаллографии и кристаллохимии. Г.В. Вульф первым в России начал рентгеноструктурные исследования кристаллов и независимо от Брэгга вывел основное уравнение дифракции рентгеновских лучей кристаллами. Академик А.В. Шубников организовал в 1933 г. первый в мире Институт кристаллографии и известен не только как выдающийся исследователь физических свойств кристаллов, но и как пионер промышленного производства кварца, сегнетовой соли и других технически важных кристаллов. Академик Н.В. Белов - основатель отечественной школы структурной кристаллографии и кристаллохимии, автор всемирно известных блестящих работ по структурам минералов, неорганической кристаллохимии и теории симметрии. Весомый вклад в развитие кристаллографии, структурных исследований и кристаллохимии различных классов соединений внесли также Г.С. Жданов, А.И. Китайгородский, М.А. Порай-Кошиц, Б.К. Вайнштейн, Ю.Т. Стручков, П.М. Зоркий и другие отечественные ученые. Структурной кристаллографией и кристаллохимией занимались такие выдающиеся ученые как В.И. Вернадский, П. Дебай, Л. Полинг, Дж. Бернал, А.Е. Ферсман, В. Гольдшмидт, Дж. Уотсон и Ф. Крик, М. Перутц, Д.К. Хочкин и другие, многие из них стали впоследствии лауреатами Нобелевской и других научных премий.

Общепризнано, что родоначальником структурной кристаллографии в нашей стране является Н.В. Белов, и наиболее значимые результаты в этой области связаны с трудами самого Н.В. Белова и его многочисленных учеников. О большом международном авторитете Н.В. Белова свидетельствует то, что в течение 15 лет он занимал выборные руководящие должности в Международном союзе кристаллографов (МСК): был членом Исполнительного комитета МСК, его вице-президентом, а в 1966 г. Генеральная ассамблея МСК избрала Н,В. Белова президентом Международного союза кристаллографов. В нашей стране научная и общественная деятельность Н.В. Белова была высоко оценена: он был Героем Соцтруда, награжден 4 орденами Ленина, а также орденами Октябрьской Революции и Трудового Красного Знамени, медалями. Академия наук СССР в 1965 г. Присвоила ему свою высшую награду - золотую медаль имени М.В. Ломоносова. Он был лауреатом Ленинской и Государственной премий.

Научная школа Н.В. Белова широко известна в России. Она в первую очередь объединяет представителей трех организаций, которые он возглавлял на протяжении ряда лет - это структурный отдел Института кристаллографии РАН и две кафедры: в МГУ и в Нижегородском Университете. Но неформальных кристаллографических ячеек, возникших под влиянием Николая Васильевича гораздо больше. Такие имеются и в Черноголовке.

Николай Васильевич Белов был человеком ярким, многогранным, оказавшим большое влияние на формирование отношения к жизни у всех, кому посчастливилось с ним сотрудничать и общаться.

Мне повезло, что к таким счастливчикам отношусь и я.

Н.В. Белов (1891 -1982 )



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ