Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

что линии магнитной индукции поля кругового тока не являются правильными окружностями, они замыкаются, обходя проводник, по которому идет ток. Направление линий магнитной индукции можно определить с помощью правила правого винта (правило буравчика): если головку винта вращать в направлении тока в проводнике, то поступательное движение острия винта покажет направление магнитной индукции в центре кругового тока .

Закон Био́-Савара-Лапла́са - физический закон для определения вектора индукции магнитного поля, порождаемого постоянным электрическим током.

При прохождении постоянного тока по замкнутому контуру, находящемуся в вакууме, для точки, отстоящей на расстоянии r0, от контура магнитная индукция будет иметь вид.

Где I ток в контуре гамма контур, по которому идет интегрирование r0 произвольная точка

Циркуляцией магнитного поля вдоль замкнутого контура l называется интеграл:

,

где - проекция вектора на направление касательной к линии контура в данной точке.

Соответствующий интеграл для электрического поля в электростатике, как мы знаем, равен нулю, что отражает свойство потенциальности электростатического поля:

Магнитное поле не является потенциальным , оно, как было показано выше, является соленоидальным. Поэтому следует ожидать, что циркуляция магнитного поля вдоль замкнутого контура в общем случае отлична от нуля. Чтобы найти ее величину, выполним сначала некоторые вспомогательные действия.

Поле соленоида и тороидаСоленоид – цилиндрическая катушка, состоящая из большого числа витков, равномерно намотанных на сердечник. Тороид можно рассматривать как длинный соленоид, свернутый в кольцо

внутри соленоида поле однородно, а вне соленоида не однородно и очень слабое (можно считать, равным нулю).

Циркуляция вектора В по замкнутому контуру, совпадающему с одной из линий магнитной индукции, охватывающему все N витков, согласно (4.12) равна: .

Магнитное поле внутри тороида, так же, как в соленоиде, однородно, сосредоточено внутри; вне тороида магнитное поле, создаваемое круговыми токами тороида, равно нулю. Величина магнитного поля в тороиде определяется выражением причем длина тороида l берется по средней длине тороида (среднему диаметру).

Выражение для силы Ампера можно записать в виде: F = qnSΔlυB sin α. Взаимодействие параллельных токов Одним из важных примеров магнитного взаимодействия токов является взаимодействие параллельных токов. Закономерности этого явления были экспериментально установлены Ампером. Если по двум параллельным проводникам электрические токи текут в одну и ту же сторону, то наблюдается взаимное притяжение проводников. В случае, когда токи текут в противоположных направлениях, проводники отталкиваются. Взаимодействие токов вызывается их магнитными полями: магнитное поле одного тока действует силой Ампера на другой ток и наоборот. Опыты показали, что модуль силы, действующей на отрезок длиной Δl каждого из проводников, прямо пропорционален силам тока I1 и I2 в проводниках, длине отрезка Δl и обратно пропорционален расстоянию R между ними:

Где μ0 – постоянная величина, которую называют магнитной постоянной. Введение магнитной постоянной в СИ упрощает запись ряда формул. Ее численное значение равно

Магни́тный пото́к - поток как интеграл вектора магнитной индукции через конечную поверхность . Определяется через интеграл по поверхности

Также магнитный поток можно рассчитать как скалярное произведение вектора магнитной индукции на вектор площади.

Магнитное поле в центре кругового проводника с током.

dl

R dB, B

Легко понять, что все элементы тока создают в центре кругового тока магнитное поле одинакового направления. Поскольку все элементы проводника перпендикулярны радиус-вектору, из-за чего sinα = 1, и находятся от центра на одном и том же расстоянии R , то из уравнения 3.3.6 получаем следующее выражение

B = μ 0 μI/2R . (3.3.7)

2. Магнитное поле прямого тока бесконечной длины. Пусть ток течет сверху вниз. Выберем на нем несколько элементов с током и найдем их вклады в суммарную магнитную индукцию в точке, отстоящей от проводника на расстоянии R . Каждый элемент даст свой вектор dB , направленный перпендикулярно плоскости листа «к нам», также будет направлении и суммарный вектор В . При переходе от одного элемента к другому, которые располагаются на разной высоте проводника, будет изменяться угол α в пределах от 0 до π. Интегрирование даст следующее уравнение

B = (μ 0 μ/4π)2I/R . (3.3.8)

Как мы говорили, магнитное поле ориентирует определенным образом рамку с током. Это происходит потому, что поле оказывает силовое воздействие на каждый элемент рамки. И поскольку токи на противоположных сторонах рамки, параллельных ее оси, текут в противоположных направлениях, то и силы, действующие на них, оказываются разнонаправленными, вследствие чего и возникает вращающий момент. Ампер установил, что сила dF , которая действует со стороны поля на элемент проводника dl , прямо пропорциональна силе тока I в проводнике и векторному произведению элемента длиной dl на магнитную индукцию В :

dF = I [dl , B ]. (3.3.9)

Выражение 3.3.9 называют законом Ампера . Направление вектора силы, которая называется силой Ампера , определяют по правилу левой руки: если ладонь руки расположить так, чтобы в нее входил вектор В , а четыре вытянутых пальца направить вдоль тока в проводнике, то отогнутый большой палец укажет направление вектора силы. Модуль силы Ампера вычисляется по формуле

dF = IBdlsinα , (3.3.10)

где α – угол между векторами dl и B .

Пользуясь законом Ампера, можно определить силу взаимодействия двух токов. Представим себе два бесконечных прямолинейных тока I 1 и I 2 , текущих перпендикулярно плоскости рис. 3.3.4 в сторону наблюдателя, расстояние между которыми равно R . Понятно, что каждый проводник создает в пространстве вокруг себя магнитное поле, которое по закону Ампера действует на другой проводник, находящийся в этом поле. Выберем на втором проводнике с током I 2 элемент dl и рассчитаем силу dF 1 , с которой магнитное поле проводника с током I 1 действует на этот элемент. Линии магнитной индукции поля, которое создает проводник с током I 1 , представляют собой концентрические окружности (рис. 3.3.4).

В 1

dF 2 dF 1

B 2

Вектор В 1 лежит в плоскости рисунка и направлен вверх (это определяется по правилу правого винта), а его модуль

B 1 = (μ 0 μ/4π)2I 1 /R . (3.3.11)

Сила dF 1 , с которой поле первого тока действует на элемент второго тока, определяется по правилу левой руки, она направлена в сторону первого тока. Поскольку угол между элементом тока I 2 и вектором В 1 прямой, для модуля силы с учетом 3.3.11 получаем

dF 1 = I 2 B 1 dl = (μ 0 μ/4π)2I 1 I 2 dl/R . (3.3.12)

Легко показать, рассуждая аналогичным образом, что сила dF 2 , с которой магнитное поле второго тока действует на такой же элемент первого тока

Магнитное поле тока:

Магнитное поле создается вокруг электрических зарядов при их движении. Так как движение электрических зарядов представляет собой электрический ток, то вокруг всякого про­водника с током всегда существует магнитное поле тока .

Чтобы убедиться в существовании магнитного поля тока, поднесем сверху к проводнику, по которому протекает электрический ток, обыкновенный компас. Стрелка компаса тотчас же отклонится в сторону. Поднесем компас к проводнику с током снизу - стрелка компаса отклонится в другую сторону (рисунок 1).

Применим закон Био–Савара–Лапласа для расчета магнитных полей простейших токов. Рассмотрим магнитное поле прямого тока.

Все векторы dB от произвольных элементарных участков dl имеют одинаковое направление. Поэтому сложение векторов можно заменить сложением модулей.

Пусть точка, в которой определяется магнитное поле, находится на расстоянии b от провода. Из рисунка видно, что:

;

Подставив найденные значения r и dl в закон Био–Савара–Лапласа, получим:

Для конечного проводника угол α изменяется от , до. Тогда

Для бесконечно длинного проводника , а , тогда

или, что удобнее для расчетов, .

Линии магнитной индукции прямого тока представляют собой систему концентрических окружностей, охватывающих ток.

21. Закон Био-Савара-Лапласа и его применение к расчету индукции магнитного поля кругового тока.

Магнитное поле кругового проводника с током.

22. Магнитный момент витка с током. Вихревой характер магнитного поля.

Магнитный момент витка с током это физическая величина, как и любой другой магнитный момент, характеризует магнитные свойства данной системы. В нашем случае систему представляет круговой виток с током. Этот ток создает магнитное поле, которое взаимодействует с внешним магнитным полем. Это может быть как поле земли, так и поле постоянного или электромагнита.

Рисунок - 1 круговой виток с током

Круговой виток с током можно представить в виде короткого магнита. Причем этот магнит будет направлен перпендикулярно плоскости витка. Расположение полюсов такого магнита определяется с помощью правила буравчика. Согласно которому северный плюс будет находиться за плоскостью витка, если ток в нем будет двигаться по часовой стрелке.

Рисунок- 2 Воображаемый полосовой магнит на оси витка

На этот магнит, то есть на наш круговой виток с током, как и на любой другой магнит, будет воздействовать внешнее магнитное поле. Если это поле будет однородным, то возникнет вращающий момент, который будет стремиться развернуть виток. Поле буде поворачивать виток так чтобы его ось расположилась вдоль поля. При этом силовые линии самого витка, как маленького магнита, должны совпасть по направлению с внешним полем.

Если же внешнее поле будет не однородным, то к вращающему моменту добавится и поступательное движение. Это движение возникнет вследствие того что участки поля с большей индукцией будут притягивать наш магнит в виде витка больше чем участки с меньшей индукцией. И виток начнет двигаться в сторону поля с большей индукцией.

Величину магнитного момента кругового витка с током можно определить по формуле.

Где, I ток протекающий по витку

S площадь витка с током

n нормаль к плоскости в которой находится виток

Таким образом, из формулы видно, что магнитный момент витка это векторная величина. То есть кроме величины силы, то есть ее модуля он обладает еще и направлением. Данное свойство магнитный момент получил из-за того что в его состав входит вектор нормали к плоскости витка.

Пусть постоянный электрический ток силой I протекает по плоскому круглому контуру радиуса R . Найдем индукцию поля в центре кольца в точке O (рис. 431).

рис. 431
 Мысленно разобьем кольцо на малые участки, которые можно считать прямолинейными, и применим закон Био -Саварра-Лапласа для определения индукции поля, создаваемого этим элементом, в центре кольца. В данном случае вектор элемента тока (IΔl) k и вектор r k , соединяющий данный элемент с точкой наблюдения (центр кольца), перпендикулярны, поэтому sinα = 1 . Вектор индукции поля, созданного выделенным участком кольца, направлен вдоль оси кольца, а его модуль равен

 Для любого другого элемента кольца ситуация абсолютно аналогична − вектор индукции также направлен по оси кольца, а его модуль определяется формулой (1). Поэтому суммирование этих векторов выполняется элементарно и сводится к суммированию длин участков кольца

 Усложним задачу − найдем индукцию поля в точке A , находящейся на оси кольца на расстоянии z от его центра (рис. 432).

рис. 432
 По-прежнему, выделяем малый участок кольца (IΔl) k и строим вектор индукции поля ΔB k , созданным этим элементом, в рассматриваемой точке. Это вектор перпендикулярен вектору r , соединяющему выделенный участок с точкой наблюдения. Векторы (IΔl) k и r k , как и ранее, перпендикулярны, поэтому sinα = 1 . Так кольцо обладает осевой симметрией, то суммарный вектор индукции поля в точке A должен быть направлен по оси кольца. К этому же выводу о направлении суммарного вектора индукции можно прийти, если заметить, что каждому выделенному участку кольца имеется симметричный ему с противоположной стороны, а сумма двух симметричных векторов направлена вдоль оси кольца. Таким образом, для того чтобы определить модуль суммарного вектора индукции, необходимо просуммировать проекции векторов на ось кольца. Эта операция не представляет особой сложности, если учесть, расстояния от всех точек кольца до точки наблюдения одинаковы r k = √{R 2 + z 2 } , а также одинаковы углы φ между векторами ΔB k и осью кольца. Запишем выражение для модуля искомого суммарного вектора индукции


 Из рисунка следует, что cosφ = R/r , с учетом выражения для расстояния r , получим окончательное выражение для вектора индукции поля


 Как и следовало ожидать, в центре кольца (при z = 0 ) формула (3) переходит в полученную ранее формулу (2).

Задания для самостоятельной работы.
1. Постройте график зависимости индукции поля (3) от расстояния до центра кольца.
2. Сравните полученную зависимость (3) с выражением для модуля напряженности электрического поля, создаваемого равномерно заряженным кольцом (36.6) . Объясните возникшие принципиальные различия между этими зависимостями.

Используя общий рассматриваемый здесь метод, можно рассчитать индукцию поля в произвольной точке. Рассматриваемая система обладает осевой симметрией, поэтому достаточно найти распределение поля в плоскости, перпендикулярной плоскости кольца и проходящей через его центр. Пусть кольцо лежит в плоскости xOy (рис. 433),

рис. 433
а поле рассчитывается в плоскости yOz . Кольцо следует разбить на малые участки, видимые из центра под углом Δφ и просуммировать поля создаваемые этими участками. Можно показать (попробуйте проделать это самостоятельно), что компоненты вектора магнитной индукции поля, создаваемого одним выделенным элементом тока, в точке с координатами (y, z ) рассчитываются по формулам:


 Необходимое суммирование не может быть проведено аналитически, так как при переходе от одного участка кольца к другому изменяются расстояния до точки суммирования. Поэтому «простейший» способ провести такое суммирование − использовать компьютер.
 Если же известно значение вектора индукции (или хотя бы имеется алгоритм его расчета) в каждой точке, то можно построить картину силовых линий магнитного поля. Очевидно, что алгоритм построения силовых линий векторного поля не зависит от его физического содержания, а такой алгоритм был кратко рассмотрен нами при изучении электростатики.
 На рис. 434 картина силовых линий рассчитана при разбиении кольца на 20 частей, этого оказалось вполне достаточно, так как и при 10 интервалах разбиения получался практически тот же рисунок.

рис. 434
 Рассмотрим выражение для индукции поля на оси кольца на расстояниях значительно больших радиуса кольца z >> R . В этом случае формула (3) упрощается и приобретает вид

где IπR 2 = IS = p m − произведение силы тока на площадь контура, то есть магнитный момент кольца. Эта формула совпадает (если как обычно, заменить μo в числителе на ε o в знаменателе) с выражением для напряженности электрического поля диполя на его оси.
 Такое совпадение не случайно, более того, можно показать, что подобное соответствие справедливо для любой точки поля, находящейся на больших расстояниях от кольца. Фактически малый контур с током является магнитным диполем (два одинаковых малых противоположно направленных элемента тока) − поэтому его поле совпадает с полем

Пусть в плоскости YZ располагается проволочный виток радиуса R, по которому течёт ток силы Á. Нас интересует магнитное поле, которое создаёт ток. Силовые линии вблизи витка такие: Поляризация света.Волновая оптика

Общая картина силовых линий тоже просматривается (рис.7.10). Сложение гармонических колебаний Если система участвует одновременно в нескольких колебательных процессах, то под сложением колебаний понимают нахождение закона, описывающий результиующий колебательный процесс.

По идее, нас интересовало бы поле , но в элементарных функциях указать поле этого витка нельзя. Найти можно только на оси симметрии. Мы ищем поле в точках (х,0,0).

Направление вектора определяется векторным произведением . Вектор имеет две составляющие: и . Когда мы начнём суммировать эти вектора, то все перпендикулярные составляющие в сумме дадут ноль. . А теперь пишем: , = , а . , и, наконец1), .

Мы добыли такой результат:

А теперь, в качестве проверки, поле в центре витка равна: .

Работа, совершаемая при перемещении контура с током в магнитном поле.

Рассмотрим отрезок проводника с током, способный свободно перемещаться по двум направляющим во внешнем магнитном поле (рис.9.5). Магнитное поле будем считать однородным и направленным под углом α по отношению к нормали к плоскости переме-щения проводника.

Рис.9.5 . Отрезок проводника с током в однородном магнитном поле.

Как видно из рис.9.5, вектор имеет две составляющие и , из которых только составляющая создает силу, действующую в плоскости перемещения проводника. По абсолютной величине эта сила равна:

,

где I – сила тока в проводнике; l – длина проводника; B – индукция магнитного поля.

Работа этой силы на элементарном пути перемещения ds есть:

Произведение lds равно площади dS , заметанной проводником при движении, а величинаBdScosα равна потоку магнитной индукции через эту площадь. Следовательно, можем написать:

dA=IdФ .

Рассматривая отрезок проводника с током как часть замкнутого контура и интегрируя это соотношение, найдем работу при перемещении контура с током в магнитном поле:

A = I(Ф 2 – Ф 1)

где Ф 1 и Ф 2 обозначают поток индукции магнитного поля через площадь контура соответственно в начальном и конечном положениях.

Движение заряженных частиц

Однородном магнитном поле

Рассмотрим частный случай, когда нет электрического поля, но имеется магнитное поле. Предположим, что частица, обладающая начальной скоростью u0, попадает в магнитное поле с индукцией B. Это поле мы будем считать однородным и направленным перпендикулярно к скорости u0.

Основные особенности движения в этом случае можно выяснить, не прибегал к полному решению уравнений движения. Прежде всего, отметим, что действующая на частицу сила Лоренца всегда перпендикулярна к скорости движения частицы. Это значит, что работа силы Лоренца всегда равна нулю; следовательно, абсолютное значение скорости движения частицы, а значит, и энергия частицы остаются постоянными при движении. Так как скорость частицы u не изменяется, то величина силы Лоренца

остается постоянной. Эта сила, будучи перпендикулярной, к направлению движения, является центростремительной силой. Но движение под действием постоянной по величине центростремительной силы есть движение по окружности. Радиус r этой окружности определяется условием

Если энергия электрона выражена в эВ и равна U, то

(3.6)

и поэтому

Кругообразное движение заряженных частиц в магнитном поле обладает важной особенностью: время полного обращения частицы по окружности (период движения) не зависит от энергии частицы. Действительно, период обращения равен

Подставляя сюда вместо r его выражение по формуле (3.6), имеем:

(3.7)

Частота же оказывается равной

Для данного типа частиц и период, и частота зависят только от индукции магнитного поля.

Выше мы предполагали, что направление начальной скорости перпендикулярно к направлению магнитного поля. Нетрудно сообразить, какой характер будет иметь движение, если начальная скорость частицы составляет некоторый угол с направлением поля.
В этом случае удобно разложить скорость на две составляющие, одна из которых параллельна полю, а другая перпендикулярна к полю. На частицу действует сила Лоренца, и частица движется по окружности, лежащей в плоскости, перпендикулярной к полю. Составляющая Ut, не вызывает появления добавочной силы, так как сила Лоренца при движении параллельно полю равна нулю. Поэтому в направлении поля частица движется по инерции равномерно, со скоростью

В результате сложения обоих движений частица будет двигаться по цилиндрической спирали.

Шаг винта этой спирали равен

подставляя вместо T его выражение (3.7), имеем:

Эффе́кт Хо́лла - явление возникновения поперечной разности потенциалов (называемой также холловским напряжением) при помещении проводника с постоянным током в магнитное поле. Открыт Эдвином Холлом в 1879 году в тонких пластинках золота. Свойства

В простейшем рассмотрении эффект Холла выглядит следующим образом. Пусть через металлический брус в слабом магнитном поле течёт электрический ток под действиемнапряжённости . Магнитное поле будет отклонять носители заряда (для определённости электроны) от их движения вдоль или против электрического поля к одной из граней бруса. При этом критерием малости будет служить условие, что при этом электрон не начнёт двигаться по циклоиде.

Таким образом, сила Лоренца приведёт к накоплению отрицательного заряда возле одной грани бруска, и положительного - возле противоположной. Накопление заряда будет продолжаться до тех пор, пока возникшее электрическое поле зарядов не скомпенсирует магнитную составляющую силы Лоренца:

Скорость электронов можно выразить через плотность тока:

где - концентрация носителей заряда. Тогда

Коэффициент пропорциональности между и называется коэффициентом (или константой ) Холла . В таком приближении знак постоянной Холла зависит от знака носителей заряда, что позволяет определять их тип для большого числа металлов. Для некоторых металлов (например, таких, как свинец, цинк, железо, кобальт, вольфрам), в сильных полях наблюдается положительный знак , что объясняется в полуклассической и квантовой теориях твёрдого тела.

Электромагнитная индукция - явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Электромагнитная индукция была открыта Майклом Фарадеем 29 августа [источник не указан 111 дней ] 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока - изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ