Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Исходные понятия и общие сведения о методах прогнозирования ОФП в помещениях План лекции: Введение Опасные факторы пожара. Цели лекции: Учебные В результате прослушивания материала слушатели должны знать: опасные факторы пожара воздействующие на людей на конструкции и оборудование предельно допустимые значения ОФП методы прогнозирования ОФП Уметь: прогнозировать обстановку на пожаре.Кошмаров Прогнозирование опасных факторов пожара в помещении.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


ЛЕКЦИЯ

по дисциплине "Прогнозирование опасных факторов пожара"

Тема №1. «Исходные понятия и общие сведения о методах прогнозирования ОФП в помещениях»

План лекции:

  1. Введение
  2. Опасные факторы пожара. Предельно допустимые значения ОФП.
  3. Современные научные методы прогнозирования ОФП.

Цели лекции:

  1. Учебные

В результате прослушивания материала слушатели должны знать:

  • опасные факторы пожара, воздействующие на людей, на конструкции и оборудование
  • предельно допустимые значения ОФП
  • методы прогнозирования ОФП

Уметь: прогнозировать обстановку на пожаре.

  1. Развивающие:
  • выделять самое главное
  • самостоятельность и гибкости мышления
  • развитие познавательного мышления

Литература

  1. Ю.А.Кошмаров Прогнозирование опасных факторов пожара в помещении. – Москва 2000. С.118
  2. Лекция на тему: Состав и свойства продуктов горения. Лекарственные средства для медицинской защиты от токсичных продуктов горения. – Иркутск.
  3. Лабораторный практикум «Прогнозирование опасных факторов пожара». Ю.А.Кошмаров, Ю.С.Зотов. 1997 г.

1. Введение

Понятие модели является центральным в современной теории познания. Рассмотрим его несколько подробнее.

В процессе познавательной деятельности человека постепенно вырабатывается система представлений о тех или иных свойствах изучаемого объекта и их взаимосвязях. Эта система представлений закрепляется, фиксируется в виде описания объекта на обычном языке, в виде рисунка, схемы, графика, формулы, в виде макетов, механизмов, технических устройств. Все это обобщается в едином понятии "модель", а исследование объектов познания на их моделях называют моделированием.

Таким образом, модель- это специально создаваемый объект, на котором воспроизводятся вполне определенные характеристики реального исследуемого объекта с целью его изучения. Моделирование является важнейшим инструментом научной абстракции, позволяющим выделить, обосновать характеристики изучаемого реального объекта: свойства, взаимосвязи, структурные и функциональные параметры и др.

Метод моделирования как метод научного познания имеет историю, исчисляемую тысячелетиями. Его нельзя считать недавно открытым методом научного исследования. Однако только в середине XX в. само моделирование стало предметом как философских, так и специальных исследований. Объясняется это, в частности, тем, что метод моделирования переживает сейчас подлинную революцию, связанную с развитием, во-первых, теории подобия и, во-вторых, кибернетики и электронной вычислительной техники.

Именно эта революция и позволила специалистам в последние десятилетия приступить к созданию и активному использованию, прежде всего, в научных исследованиях, а затем и на практике различных моделей возникновения, развития и ликвидации пожаров. Поясним это утверждение только на двух примерах. Первый пример относится к так называемому материальному (физическому) моделированию, о котором подробнее будет сказано ниже. В первой половине XX в., когда начиналось интенсивное развитие авиастроения и кораблестроения, строительство крупных гидротехнических сооружений, связанное с этими процессами развитие металлургии и других отраслей промышленности, сложные инженерные расчеты приходилось проверять на моделях самолетов, кораблей, плотин и др. В результате возникла острая необходимость в развитии специфической теории физического моделирования. Так сформировалась теория подобия, зачатки которой тоже можно обнаружить задолго до нашего века.

Теория подобия — это учение об условиях подобия физических явлений, процессов и систем, которое опирается на учение о размерностях физических величин и положено в основу экспериментов с физическими моделями.

Физические явления, процессы и системы считаются подобными, если в сходственных точках пространства в сходственные моменты времени величины, характеризующие состояние системы, пропорциональны соответствующим величинам другой системы. Такими величинами являются так называемые критерии подобия — безразмерные числовые характеристики, составленные из размерных физических параметров, определяющих исследуемые физические явления. Равенство однотипных критериев подобия для двух физических процессов и систем — необходимое и достаточное условие их физического подобия. Предметом теории подобия является установление критериев подобия для различных физических явлений.

В интересующей нас области автором теории физического моделирования процессов теплопередачи и тепловых устройств явился наш соотечественник М.В. Кирпичев (1879-1955 гг.). Теория подобия в целом и его работы в частности послужили импульсом в использовании методов физического моделирования при изучении закономерностей динамики пожаров.

Итак, модель — это объект любой природы, который заменяет реальный исследуемый объект так, что его изучение дает новую информацию о реальном объекте. Естественно, модели выбираются таким образом, чтобы они были проще и удобнее для исследования, чем интересующие нас объекты (тем более, что существуют и такие объекты, которые вообще нельзя активно исследовать).

В зависимости от средств, с помощью которых реализованы модели, различают, прежде всего, материальное (предметное) и идеальное (абстрактное) моделирование.

Материальным называется моделирование, в котором исследование ведется на основе модели, воспроизводящей основные геометрические, физические, динамические и функциональные характеристики изучаемого объекта. Частным случаем материального моделирования является физическое моделирование, при котором моделируемый объект и модель имеют одну и ту же физическую природу.

Идеальные модели связаны с использованием каких-либо символических схем (графических, логических, математических и др.).

Математические модели тоже имеют свою классификацию (и не одну). Нам удобно подразделить математические модели, во-первых, на аналитические и имитационные. В случае аналитических моделей исследуемый объект и его свойства описывают отношениями-функциями в явной или неявной форме (дифференциальными или интегральными уравнениями; операторами) таким образом, что становится возможным непосредственно с помощью соответствующего математического аппарата сделать необходимые выводы об изучаемом объекте и его свойствах.

Одной из первых и простейших аналитических моделей пожара была модель, отражающая зависимость температуры "стандартного" пожара от времени, используемая при испытании строительных конструкций на огнестойкость. Ее обычно называют стандартной кривой "температура-время" и задают либо в виде таблицы, либо в виде эмпирической формулы. В отечественной литературе ее часто записывают в виде:

T= Т 0 + 345lg(8τ + 1) ,

где τ — время, мин; Т 0 — начальная температура, °С; Т- текущая температура пожара, °С.

2. Опасные факторы пожара. Физические величины, характеризующие ОФП в количественном отношении.

В современных условиях разработка экономически оптимальных и эффективных противопожарных мероприятий немыслима без научно обоснованного прогноза динамики опасных факторов пожара (ОФП).

Прогнозирование ОФП необходимо:

  • при разработке рекомендаций по обеспечению безопасной эвакуации людей при пожаре;
  • при создании и совершенствовании систем сигнализации и автоматических систем пожаротушения;
  • при разработке оперативных планов тушения (планировании действий боевых подразделений на пожаре);
  • при оценке фактических пределов огнестойкости;
  • и для многих других целей.

Современные методы прогнозирования ОФП не только позволяют заглядывать в «будущее», но и дают возможность снова «увидеть» то, что уже когда-то произошло. Другими словами, теория прогнозирования позволяет воспроизвести восстановить картину развития реально произодшего пожара, т.е. «увидеть» прошлое. Это необходимо, например, при криминалистической или пожарно-технической экспертизе пожара.

Различают первичные и вторичные проявления ОФП.

Первичными опасными факторами, воздействующими на людей и материальные ценности (согласно ГОСТ 12.1.004-91), являются:

Пламя и искры;

Повышенная температура окружающей среды;

Токсичность продуктов горения и термического разложения;

Дым;

Пониженная концентрация кислорода.

Вторичными опасными факторами, воздействующими на людей и материальные ценности (согласно ГОСТ 12.1.004-91), являются:

Осколки, части разрушившихся аппаратов, агрегатов, устано в ок, констр у кций;

Радиоактивные и то к сич н ые вещества и материалы, вышедшие из разрушенных аппаратов и установок;

Электрический ток, возникший в результате выноса высокого н апряжен и я на токопроводящие части конструкций, аппаратов, а грегатов;

Опасные факторы взрыва по ГОСТ 12.1.010-76* , происшедшего вследствие пожара;

Огнетушащие вещества.

Основными факторами, характеризующими опасность взрыва, ГОСТ 12.1.010-76* «Взрывобезопасность общие требования» являются:

Максимальное давление и температура взрыва;

Скорость нарастания давления при взрыве;

Давление во фронте ударной волны;

Дробящие и фугасные свойства взрывоопасной среды.

Опасными и вредными факторами, воздействующими на работающих в результате взрыва, являются:

Ударная волна, во фронте которой давление превышает допустимое значение;

Пламя;

Обрушивающиеся конструкции, оборудование, коммуникации, здания и сооружения и их разлетающиеся части;

Образовавшиеся при взрыве и (или) выделившиеся из поврежденного оборудования вредные вещества, содержание которых в воздухе рабочей зоны превышает предельно допустимые концентрации.

С научных позиций опасные факторы пожара являются физическими понятиями и, следовательно каждый из них представлен в количественном отношении одной или несколькими физическими величинами. С этих позиций рассмотрим вышеперечисленные ОФП.

  1. Пламя – это видимая часть пространстве (пламенная зона), внутри которой протекает процесс окисления (горения) и происходит тепловыделение, а также генерируются токсичные газообразные продукты и поглощается забираемый из окружающего пространства кислород.

По отношению к объему помещения, заполненного газом, пламенную зону можно рассматривать, с одной стороны, как «генератор», тепловой энергии, поступающей в помещение, токсичных продуктов горения и мельчайших твердых частицы, ухудшающих видимость. С другой стороны, пламенная зона потребляет кислород из помещения.

В связи с выше сказанным содержание понятия «пламя» представлено в количественном отношении следующими величинами:

  • характерными размерами пламенной зоны (очага горения), например, площадью горения (площадью пожара) F Г , м 2 .
  • количеством сгорающего за единицу времени горючего материала (скоростью выгорания) ψ , кг . с -1
  • мощностью тепловыделения Q пож. = ψ . Q н р , где Q н р – теплота сгорания, Дж . кг -1
  • количеством генерирумых за единицу времени в пламенной зоне токсичных газов ψ . l i . кг . с -1 , где l i – количество токсичного газа образующегося при сгорании
  • количеством кислорода, потребляемого в зоне горения ψ . l Т . кг . с -1 , l Т – количество кислорода для сгорания единицы массы
  • оптическим количеством дыма, образующегося в очаге горения.
  1. Повышенная температура окружающей среды и температура среды, заполняющей помещение, является параметром состояния. Физическое состояние этого параметра рассматривалось по дисциплинам ТГиВ, ФХОР и ТП, он обозначается Т , если используется размерность Кельвин или t , если используется размерность градусы Цельсия.

Примеры:

  • температура окружающей среды при тушении газонефтяных пожаров
  • при тушении кабельных туннелей, галерей и др. замкнутых помещений.
  1. Токсичные продукты горения – этот фактор количественно характеризуется парциальный плоскостью (или концентрацией) каждого токсичного газа. Под токсичностью обычно понимают степень вредного воздействия химического вещества на живой организм (при горении полимерных материалов – высоко токсичные соединения, трудно предсказуемые классической химией и не всегда обнаруживаемые современными тех.средствами). В последнее время в печати – сведения о супертоксикантах – диоксинах. Эти ядовитые вещества могут образовываться при пожарах в кабельных туннелях, трансформаторах и на обычных городских свалках. Таким образом, широкий спектр токсичных продуктов горения и трудность установления свойств и состава компонентов парогазоаэрозольного комплекса, который мы просто и обычно называем дымом (Кабельный завод г.Шелехово). При нарушении транспортировки и передачи кислорода тканям развивается кислородная недостаточность (СО – угарный газ). Во время пожаров в зданиях, имеющих полимерные материалы, наибольшие содержания СО в дыме (1,3 – 5%) – эти концентрации намного больше смертельных (АЦИЗОЛ).
  2. Пониженная концентрация кислорода в помещении . Этот фактор количественно характеризуется значением парциальной плоскости кислорода р 1 или отношением ее к плоскости газовой среды в помещении, т.е.

Все вышеперечисленные величины – являются параметрами состояния среды, заполняющей помещение при пожаре. Начиная с возникновения пожара в процессе его развития эти параметры непрерывно изменяются во времени, т.е. Т = Х(τ)

5. Дым — устойчивая дисперсная система, состоящая из мелких твёрдых частиц, находящихся во взвешенном состоянии в газах. Дым — типичный аэрозоль с размерами твёрдых частиц от 10 -7 до 10 -5 м. В отличие от пыли — более грубодисперсной системы, частицы дыма практически не оседают под действием силы тяжести. Частицы дыма могут служить. Процесс образования дисперсной среды, ухудшающей видимость, принято называть процессом дымообразования.

Совокупность этих зависимостей составляет суть динамики ОФП.

При рассмотрении воздействия ОФП на людей используются так называемые предельно допустимые значения (ПДЗ) параметров состояния среды в зоне пребывания людей. ПДЗ ОФП получены в результате обширных медико-биологических исследований, в процессе которых установлен характер воздействия ОФП на людей, в зависимости от значений их количественных характеристик.

Так, например, установлено, что если концентрация кислорода уменьшается вдвое по сравнению с нормальной концентрацией его в воздухе (составляет 23% т.е. приблизительно 270 г. О 2 в м 3 воздуха) , т.е. будет составлять 135 г О 2 в м 3 воздуха, то нарушается деятельность сердечно-сосудистой системы и органов дыхания человека, а также он теряет способность реальной оценки событий. При уменьшении концентрации кислорода в 3 раза – останавливается дыхание и через 5 минут останавливается работа сердца (Руководство по борьбе за живучесть подводной лодки)

Следует отметить, что в условиях пожара имеет место одновременное воздействие на человека всех ОФП. Вследствие этого опасность многократно увеличивается. Предельно допустимые значения ОФП указаны в ГОСТ 12.1.004-91.

Далее рассмотрим воздействие ОФП на элементы конструкций и оборудование термическое воздействие пожара на них. Например, при оценке воздействия пожара на железобетонные конструкции применяется понятие критического значения температуры арматуры этих конструкций. Обычно считается, что при нагревании арматуры до температуры, равный 400-450 0 С, происходит разрушение железобетонной конструкции.

Следующее, металла открытой металлической конструкции (л.марта, регилей кран.балки и т.д.) – при температуре 900 0 С через 15 минут.

При оценке воздействия пожара на остекление предполагается, что при температуре газовой среды в помещении, равной 300-350 0 С будет происходить разрушение остекления.

А скорость роста температуры в кабельных помещениях (условно и в подвалах) по опытным данным составляет в среднем 35-50 0 в минуту.

3. Современные научные методы прогнозирования ОФП.

Современные научные методы прогнозирования ОФП основываются на математическом моделировании, т.е. на математических моделях пожара. Математическая модель пожара описывает в самом общем виде изменение параметров состояния среды в помещениях в течение суток, а также изменение параметров состояния ограждающих конструкций и оборудования.

Основные уравнения, из которых состоит математическая модель пожара, вытекает из фундаментальных законов природы – первого закона термодинамики, закона сохранения массы и закона импульса.

Эти уравнения отражают и увязывают всю совокупность взаимосвязанных процессов, присущих пожару, таких как тепловыделение в результате горения, дымовыделения в пламенной зоне, выделение и распространение токсичных газов, газообмен помещений с окружающей средой и со смежными помещениями, теплообмен и нагревание ограждающих конструкций, снижение концентрации кислорода в помещении.

Методы прогнозирования ОФП различают в зависимости от вида математической модели пожара и делятся на три класса (три вида) : интегральные, зонные, полевые (дифференциальные).

Интегральная модель пожара позволяет получить информацию, т.е. сделать прогноз, о средних значениях параметров состояния среды в помещении для любого момента развития пожара.

Зонная модель позволяет получить информацию о размерах характерных зон, возникающих при пожаре в помещениях и средних параметров состояния среды в этих зонах.

Полевая дифференциальная модель позволяет рассчитать для любого момента развития пожара значения всех локальных параметров состояния во всех точках пространства внутри помещения.

Перечисленные модели отличаются друг от друга объемом той информации, которую они могут дать о состоянии газовой среды в помещении и взаимодействующих с нею конструкций на разных этапах пожара.

В математическом отношении три вышеуказанных вида моделей пожара характеризуются разным уровнем сложности. Наиболее сложной в математическом отношении является полевая модель.

Вывод по лекции: Следует подчеркнуть, что основные дифференциальные уравнения всех названных математических моделей пожара вытекают из неопровержимых фундаментальных законов природы.

PAGE 8

Другие похожие работы, которые могут вас заинтересовать.вшм>

14527. Общие сведения о методах прогнозирования 21.48 KB
Общие сведения о методах прогнозирования ОФП в помещении Общие понятия и сведения об опасных факторах пожара. Методы прогнозирования ОПФ Общие понятия и сведения об опасных факторах пожара Разработка экономически оптимальных и эффективных противопожарных мероприятий основана на научнообоснованном прогнозе динамики ОФП. Современные методы прогнозирования пожара позволяют воспроизвести восстановить картину развития реального пожара. Это необходимо при криминалистической или пожарнотехнической экспертизе пожара.
7103. ОБЩИЕ СВЕДЕНИЯ И ПОНЯТИЯ О КОТЕЛЬНЫХ УСТАНОВКАХ 36.21 KB
В результате этого в паровых котлах вода превращается в пар а в водогрейных котлах нагревается до требуемой температуры. Тягодутьевое устройство состоит из дутьевых вентиляторов системы газовоздуховодов дымососов и дымовой трубы с помощью которых обеспечиваются подача необходимого количества воздуха в топку и движение продуктов сгорания по газоходам котла а также удаление их в атмосферу. представлена схема котельной установки с паровыми котлами. Установка состоит из парового котла который имеет два барабана верхний и нижний.
17665. Общие сведения из метрологии 31.74 KB
Современное состояние измерений в телекоммуникациях Процесс совершенствования измерительных технологий подчиняется общей тенденции усложнения высоких технологий в процессе их развития. Основными тенденциями в развитии современной измерительной техники являются: расширение пределов измеряемых величин и повышение точности измерений; разработка новых методов измерений и приборов с использованием новейших принципов действия; внедрение автоматизированных информационно-измерительных систем характеризуемых высокой точностью быстродействием...
12466. Общие сведения о гидропередачах 48.9 KB
Поэтому в дальнейшем для краткости изложения слово “статические†как правило будет опускаться. При этом усилие F1 необходимое для перемещения поршней бесконечно мало. Для удовлетворения понятию “статическая гидропередача†должно быть выполнено условие геометрического отделения полости нагнетания от полости всасывания.
8415. Общие сведения о ссылках 20.99 KB
Язык C предлагает альтернативу для более безопасного доступа к переменным через указатели.Объявив ссылочную переменную, можно создать объект, который, как указатель, ссылается на другое значение, но, в отличие от указателя, постоянно привязан к этому значению. Таким образом, ссылка на значение всегда ссылается на это значение.
2231. ОБЩИЕ СВЕДЕНИЯ О ГАЗОТУРБИННЫХ ДВИГАТЕЛЯХ 1.28 MB
В данном пособии рассматривается лишь один тип газотурбинные двигатели ГТД т. ГТД широко применяются в авиационной наземной и морской технике.1 показаны основные объекты применения современных ГТД. Классификация ГТД по назначению и объектам применения В настоящее время в общем объеме мирового производства ГТД в стоимостном выражении авиационные двигатели составляют около 70 наземные и морские около 30 .
6149. Общие сведения о промышленных предприятиях РФ и региона 29.44 KB
В частности угольные производства горнорудные производства химические производства нефтедобывающие производства газодобывающие производства геологоразведочные предприятия объекты эксплуатирующие магистральные газопроводы предприятия газоснабжения металлургические производства производства хлебопродуктов объекты котлонадзора объекты эксплуатирующие стационарные грузоподъемные механизмы и сооружения предприятия занятые перевозкой опасных грузов и другие. Классификация объектов экономики промышленных предприятий В...
1591. ОБЩИЕ СВЕДЕНИЯ О ГЕОГРАФИЧЕСКИХ ИНФОРМАЦИОННЫХ СИСТЕМАХ 8.42 KB
Географическая информационная система или геоинформационная система (ГИС) - это информационная система, обеспечивающая сбор, хранение, обработку, анализ и отображение пространственных данных и связанных с ними непространственных, а также получение на их основе информации и знаний о географическом пространстве.
167. Общие сведения по эксплуатация средств вычислительной техники 18.21 KB
Основные понятия Средства вычислительной техники СВТ – это компьютеры к которым относятся персональные компьютеры ПЭВМ сетевые рабочие станции серверы и другие виды компьютеров а также периферийные устройства компьютерная оргтехника и средства межкомпьютерной связи. Эксплуатация СВТ заключается в использовании оборудования по назначению когда ВТ должна выполнять весь комплекс возложенных на нее задач. Для эффективного использования и поддержания СВТ в работоспособном состоянии в процессе эксплуатации проводится...
9440. Общие сведения о приемо-передающих устройствах систем управления средствами поражения 2.8 MB
Электрическая копия первичного сообщения ток или напряжение подлежащего передаче называется управляющим сигналом и обозначается при аналитической записи символами или. Название обусловлено тем что этот сигнал в дальнейшем управляет одним или несколькими из параметров высокочастотных колебаний в процессе модуляции. Спектры управляющих сигналов в этой связи лежат в области низких частот и эффективно излучены быть не могут.

ЛЕКЦИЯ

по дисциплине "Прогнозирование опасных факторов пожара"

Тема №1. «Исходные понятия и общие сведения о методах прогнозирования ОФП в помещениях»

План лекции:

1. Введение

2. Опасные факторы пожара. Предельно допустимые значения ОФП.

3. Современные научные методы прогнозирования ОФП.

Цели лекции:

1. Учебные

В результате прослушивания материала слушатели должны знать:

Опасные факторы пожара, воздействующие на людей, на конструкции и оборудование

Предельно допустимые значения ОФП

Методы прогнозирования ОФП

Уметь: прогнозировать обстановку на пожаре.

2. Развивающие:

Выделять самое главное

Самостоятельность и гибкости мышления

Развитие познавательного мышления

Литература

1. Ю.А.Кошмаров Прогнозирование опасных факторов пожара в помещении. – Москва 2000. С.118

2. Лекция на тему: Состав и свойства продуктов горения. Лекарственные средства для медицинской защиты от токсичных продуктов горения. – Иркутск.

3. Лабораторный практикум «Прогнозирование опасных факторов пожара». Ю.А.Кошмаров, Ю.С.Зотов. 1997 г.

Понятие модели является центральным в современной теории познания. Рассмотрим его несколько подробнее.

В процессе познавательной деятельности человека постепенно вырабатывается система представлений о тех или иных свойствах изучаемого объекта и их взаимосвязях. Эта система представлений закрепляется, фиксируется в виде описания объекта на обычном языке, в виде рисунка, схемы, графика, формулы, в виде макетов, механизмов, технических устройств. Все это обобщается в едином понятии "модель", а исследование объектов познания на их моделях называют моделированием.

Таким образом, модель- это специально создаваемый объект, на котором воспроизводятся вполне определенные характеристики реального исследуемого объекта с целью его изучения. Моделирование является важнейшим инструментом научной абстракции, позволяющим выделить, обосновать характеристики изучаемого реального объекта: свойства, взаимосвязи, структурные и функциональные параметры и др.

Метод моделирования как метод научного познания имеет историю, исчисляемую тысячелетиями. Его нельзя считать недавно открытым методом научного исследования. Однако только в середине XX в. само моделирование стало предметом как философских, так и специальных исследований. Объясняется это, в частности, тем, что метод моделирования переживает сейчас подлинную революцию, связанную с развитием, во-первых, теории подобия и, во-вторых, кибернетики и электронной вычислительной техники.

Именно эта революция и позволила специалистам в последние десятилетия приступить к созданию и активному использованию, прежде всего, в научных исследованиях, а затем и на практике различных моделей возникновения, развития и ликвидации пожаров. Поясним это утверждение только на двух примерах. Первый пример относится к так называемому материальному (физическому) моделированию, о котором подробнее будет сказано ниже. В первой половине XX в., когда начиналось интенсивное развитие авиастроения и кораблестроения, строительство крупных гидротехнических сооружений, связанное с этими процессами развитие металлургии и других отраслей промышленности, сложные инженерные расчеты приходилось проверять на моделях самолетов, кораблей, плотин и др. В результате возникла острая необходимость в развитии специфической теории физического моделирования. Так сформировалась теория подобия, зачатки которой тоже можно обнаружить задолго до нашего века.



Теория подобия - это учение об условиях подобия физических явлений, процессов и систем, которое опирается на учение о размерностях физических величин и положено в основу экспериментов с физическими моделями.

Физические явления, процессы и системы считаются подобными, если в сходственных точках пространства в сходственные моменты времени величины, характеризующие состояние системы, пропорциональны соответствующим величинам другой системы. Такими величинами являются так называемые критерии подобия - безразмерные числовые характеристики, составленные из размерных физических параметров, определяющих исследуемые физические явления. Равенство однотипных критериев подобия для двух физических процессов и систем - необходимое и достаточное условие их физического подобия. Предметом теории подобия является установление критериев подобия для различных физических явлений.

В интересующей нас области автором теории физического моделирования процессов теплопередачи и тепловых устройств явился наш соотечественник М.В. Кирпичев (1879-1955 гг.). Теория подобия в целом и его работы в частности послужили импульсом в использовании методов физического моделирования при изучении закономерностей динамики пожаров.

Итак, модель - это объект любой природы, который заменяет реальный исследуемый объект так, что его изучение дает новую информацию о реальном объекте. Естественно, модели выбираются таким образом, чтобы они были проще и удобнее для исследования, чем интересующие нас объекты (тем более, что существуют и такие объекты, которые вообще нельзя активно исследовать).

В зависимости от средств, с помощью которых реализованы модели, различают, прежде всего, материальное (предметное) и идеальное (абстрактное) моделирование.

Материальным называется моделирование, в котором исследование ведется на основе модели, воспроизводящей основные геометрические, физические, динамические и функциональные характеристики изучаемого объекта. Частным случаем материального моделирования является физическое моделирование, при котором моделируемый объект и модель имеют одну и ту же физическую природу.

Идеальные модели связаны с использованием каких-либо символических схем (графических, логических, математических и др.).

Математические модели тоже имеют свою классификацию (и не одну). Нам удобно подразделить математические модели, во-первых, на аналитические и имитационные. В случае аналитических моделей исследуемый объект и его свойства описывают отношениями-функциями в явной или неявной форме (дифференциальными или интегральными уравнениями; операторами) таким образом, что становится возможным непосредственно с помощью соответствующего математического аппарата сделать необходимые выводы об изучаемом объекте и его свойствах.

Одной из первых и простейших аналитических моделей пожара была модель, отражающая зависимость температуры "стандартного" пожара от времени, используемая при испытании строительных конструкций на огнестойкость. Ее обычно называют стандартной кривой "температура-время" и задают либо в виде таблицы, либо в виде эмпирической формулы. В отечественной литературе ее часто записывают в виде:

T= Т 0 + 345lg(8τ + 1) ,

где τ - время, мин; Т 0 - начальная температура, °С; Т- текущая температура пожара, °С.

МЧС РОССИИ

Федеральное Государственное бюджетное образовательное

учреждение высшего профессионального образования

«Уральский институт Государственной противопожарной службы

Министерства Российской Федерации по делам гражданской обороны,

чрезвычайным ситуациям и ликвидации последствий стихийных бедствий»

Кафедра физики и теплообмена

КУРСОВАЯ РАБОТА

Тема: Прогнозирование опасных факторов пожара в складском помещении

Вариант №35

Выполнил:

слушатель учебной группы З-461

старший лейтенант внутренней службы Иванов И.И.

Проверил:

старший преподаватель кафедры

физики и теплообмена, к.п.н., капитан внутренней службы

Субачева А.А.

Екатеринбург

на выполнение курсовой работы

по дисциплине «Прогнозирование опасных факторов пожара»

Слушатель Иванов Иван Иванович

Вариант №35 Курс 4 Группа З-461

Наименование объекта: склад хлопка в тюках

Исходные данные

Блок атмосфера

давление, мм. рт. ст.

температура, 0 С

Блок помещение

высота, м

ширина, м

температура, 0 С

проем 1 - штатный (дверь)

нижний срез, м

Ширина, м

верхний срез, м

вскрытие, 0 С

проем 2 - штатный (окна)

Ширина, м

нижний срез, м

вскрытие, 0 С

верхний срез, м

вид горючего материала

хлопок в тюках

дымовыделение Нп*м 2 /кг

выделение СО, кг/кг

ширина, м

выделение СО 2 , кг/кг

количество ГН, кг

удельная скорость выгорания, кг/м 2 *с

выделение тепла МДж/кг

скорость распространения пламени, м/с

потребление кислорода кг/кг

Срок сдачи: «____»__________

Слушатель____________________ Руководитель_______________

1. Исходные данные

Помещение пожара расположено в одноэтажном здании. Здание построено из сборных железобетонных конструкций и кирпича. В здании наряду с помещением склада находятся два рабочих кабинета. Оба помещения отделены от склада противопожарной стеной. План объекта приведен на рисунке 1.

(Требуется проставить на схеме размеры помещения и расчетную массу горючей нагрузки согласно своему варианту!)

Рис. 1. План здания

Размеры склада:

длина l 1 = 60 м;

ширина l 2 = 24 м;

высота 2h = 6 м.

В наружных стенах помещения склада имеется 10 одинаковых оконных проемов. Расстояние от пола до нижнего края каждого оконного проема Y H = 1,2 м. Расстояние от пола до верхнего края проема Y B = 2,4 м. Суммарная ширина оконных проемов = 24 м. Остекление оконных проемов выполнено из обычного стекла. Остекление разрушается при среднеобъемной температуре газовой среды в помещении, равной 300°С.

Помещение склада отделено от рабочих кабинетов противопожарными дверьми, ширина и высота которых 3 м. При пожаре эти проемы закрыты. Помещение склада имеет один дверной проем, соединяющий его с наружной средой. Ширина проема равна 3,6 м. Расстояние от пола до верхнего края дверного проема Y в = 3, Y н =0. При пожаре этот дверной проем открыт, т.е. температура вскрытия 20 0 C.

Полы бетонные, с асфальтовым покрытием.

Горючий материал представляет собой хлопок в тюках. Доля площади, занятая горючей нагрузкой (ГН) = 30%.

Площадь пола, занятая ГН, находится по формуле:

где? площадь пола.

Количество горючего материала на 1 Р 0 = 10. Общая масса горючего материала.

Горение начинается в центре прямоугольной площадки, которую занимает ГМ. Размеры этой площадки:

Свойства ГН характеризуются следующими величинами:

теплота сгорания Q = 16,7 ;

выделение оксида углерода = 0,0052 .

Механическая вентиляция в помещениях отсутствует. Естественная вентиляция осуществляется через дверные и оконные проемы.

Отопление центральное водяное.

Внешние атмосферные условия:

ветер отсутствует, температура наружного воздуха 20 0 C = 293 К

давление (на уровне Y=h) Р а = 760 мм. рт. ст., т.е. = 101300 Па.

Параметры состояния газовой среды внутри помещения перед пожаром :

Т = 293 К (согласно выбранному варианту);

Р = 101300 Па;

Другие параметры:

критическая температура для остекления? 300 о С;

материал ограждающих конструкций - железобетон и кирпич;

температура воздуха в помещении - 20 о С;

автоматическая система пожаротушения? отсутствует;

противодымная механическая вентиляция? отсутствует.

2. Описание интегральной математической модели свободного развития пожара в складском помещении

Интегральная математическая модель пожара в помещении разработана на основе уравнений пожара, изложенных в работах . Эти уравнения вытекают из основных законов физики: закона сохранения вещества и первого закона термодинамики для открытой системы и включают в себя:

уравнение материального баланса газовой среды в помещении:

V(dс m /dф) = G B + ш - G r , (1)

где V - объем помещения, м 3 ; с m - среднеобъемная плотность газовой среды кг/м 3 ; ф - время, с; G B и G r - массовые расходы поступающего в помещение воздуха и уходящих из помещения газов, кг/с; ш - массовая скорость выгорания горючей нагрузки, кг/с;

уравнение баланса кислорода:

Vd(p 1)/dф = x 1в G B - x 1 n 1 G r - ш L 1 Ю, (2)

где x 1 - среднеобъемная массовая концентрация кислорода в помещении; х 1в - концентрация кислорода в уходящих газах; n 1 - коэффициент, учитывающий отличие концентрации кислорода в уходящих газах х 1г от среднеобъёмного значения x 1 , n 1 = х 1г /x 1 ; L 1 - скорость потребления кислорода при горении, p 1 - парциальная плотность кислорода в помещении;

уравнение баланса продуктов горения:

Vd(p 2)/dф = ш L 2 Ю - x 2 n 2 G r , (3)

где X i - среднеобъемная концентрация i-гo продукта горения; L i - скорость выделения i-гo продукта горения (СО, СО2); n i - коэффициент, учитывающий отличие концентрации i-гo продукта в уходящих газах x iг от среднеобъёмного значения x i , n i = x iг /х i ; р 2 - парциальная плотность продуктов горения в помещении;

уравнение баланса оптического количества дыма в помещении:

Vd ()/d =Dш - n 4 G r / р m - к c S w , (4)

где - среднеобъемная оптическая плотность дыма; D - дымообразующая способность ГМ; n 4 - коэффициент, учитывающий отличие концентрации дыма в уходящих из помещения нагретых газах от среднеобъемной оптической концентрации дыма, n4= м mг /м m ;

уравнение баланса энергии U:

dU/dф = Q p н ш + i г ш + С рв Т в G в - С р Т m m G r - Q w , (5)

где P m - среднеобъемное давление в помещении, Па; С рm , Т m - среднеобъемные значения изобарной теплоемкости и температуры в помещении; Q p н - низшая рабочая теплота сгорания ГН, Дж/кг; С рв, Т в - изобарная теплоемкость и температура поступающего воздуха, К; i г - энтальпия газификации продуктов горения ГН, Дж/кг; m - коэффициент, учитывающий отличие температуры Т и изобарной теплоемкости С рг уходящих газов от среднеобъемной температуры Т m и среднеобъемной изобарной теплоемкости С рm ,

m = С рг Т г /С рm Т m ;

Ю - коэффициент полноты сгорания ГН; Q w - тепловой поток в ограждение, Вт.

Среднеобъемная температура Т m связана со среднеобъёмным давлением Р m и плотностью р m уравнением состояния газовой среды в помещении:

P m = с m R m T m . (6)

Уравнение материального баланса пожара с учетом работы приточно-вытяжной системы механической вентиляции, а так же с учетом работы системы объемного тушения пожара инертным газом примет следующий вид:

VdP m / dф = ш + G B - G r + G пр - G выт + G ов, (7)

Вышеуказанная система уравнений решается численными методами с помощью компьютерной программы. Примером может служить программа INTMODEL.

3. Расчет динамики ОФП с помощью компьютерной программы INTMODEL

Результаты компьютерного моделирования

Учебная компьютерная программа INTMODEL реализует описанную выше математическую модель пожара и предназначена для расчета динамики развития пожара жидких и твердых горючих веществ и материалов в помещении. Программа позволяет учитывать вскрытие проемов, работу систем механической вентиляции и объемного тушения пожара инертным газом, а также учитывает кислородный баланс пожара, позволяет рассчитывать концентрацию оксидов углерода СО и СО 2 , задымленность помещения и дальность видимости в нем.

Таблица 1. Динамика развития параметров газовой среды в помещении и координат ПРД

Вpемя, мин

Температура

Оптическая плотность дыма

Дальность видимости

Нейтральная плоскость - ПРД Y*, м

Изменение среднеобъемных параметров газовой среды во времени


Рис. 2.

Описание графика: Рост температуры в первые 22 минуты пожара можно объяснить горением в режиме ПРН, что обусловлено достаточным содержанием кислорода в помещении. С 23 минуты пожар переходит в режим ПРВ в связи со значительным снижением концентрации кислорода. С 23 минуты по 50 минуту интенсивность горения постоянно снижается, несмотря на продолжающееся возрастание площади горения. Начиная с 50 минуты, пожар снова переходит в режим ПРН, что связано с увеличением концентрации кислорода в результате выгорания горючей нагрузки.

Выводы по графику: На графике температуры можно условно выделить 3 стадии развития пожара. Первая стадия - нарастание температуры (приблизительно до 22 мин.), вторая - квазистационарная стадия (с 23 мин. до 50 мин.), и третья - стадия затухания (с 50 мин. до полного выгорания горючей нагрузки).


Рис. 3.

Описание графика: В начальной стадии пожара выделение дыма незначительно, полнота сгорания максимальна. В основном дым начинает выделяться после 22 минуты от начала возгорания, а превышение ПДЗ по среднеобъемному значению плотности дыма произойдет примерно на 34 минуте. Начиная с 52 минуты, с переходом в режим затухания, задымление уменьшается.

Выводы по графику: Выделение значительных количеств дыма началось только с переходом пожара в режим ПРВ. Опасность снижения видимости в дыму в данном помещении невелика - ПДЗ будет превышено ориентировочно только после 34 минут от начала возгорания, что так же можно объяснить наличием в помещении открытых проемов большого размера (дверь).


Рис. 4.

Описание графика: На протяжении 26 минут развития пожара дальность видимости в горящем помещении остается удовлетворительной. С переходом в режим ПРВ видимость в горящем помещении быстро ухудшается.

Выводы по графику: Дальность видимости связана с оптической плотностью дыма соотношением. То есть дальность видимости обратно пропорциональна оптической плотности дыма, поэтому при увеличении задымления дальность видимости уменьшается и наоборот.


Рис. 5.

Описание графика: В первые 9 минут развития пожара (начальная стадия) среднеобъемная концентрация кислорода почти не изменяется, т.е. потребление кислорода пламенем низкое, что может быть объяснено малыми размерами очага горения в это время. По мере увеличения площади горения содержание кислорода в помещении снижается. Примерно с 25 минуты от начала горения содержание кислорода стабилизируется на уровне 10-12 масс.% и остается почти неизменным примерно до 49-й минуты пожара. Таким образом, с 25-й по 49-ю минуту в помещении реализуется режим ПРВ, т.е. горение в условиях недостатка кислорода. Начиная с 50-й минуты содержание кислорода увеличивается, что соответствует стадии затухания, при которой поступающий воздух снова постепенно заполняет помещение.


Выводы по графику: график концентрации кислорода, аналогично графику температуры, позволяет выявить моменты смены режимов и стадий горения. Момент превышения ПДЗ по кислороду на данном графике отследить нельзя, для этого понадобится пересчитать массовую долю кислорода в его парциальную плотность, используя значение среднеобъемной плотности газа и формулу .

Рис. 6.

Описание графика: сделать описание и выводы по графикам по аналогии с вышеприведенными.

Выводы по графику:


Рис. 7. Изменение среднеобъемной концентрации СО 2 во времени

Описание графика:

Выводы по графику:

Рис. 8. Изменение среднеобъемной плотности газовой среды во времени

Описание графика:

Выводы по графику:

Рис. 9. Изменение положения плоскости равных давлений во времени

Описание графика:

Выводы по графику:

Рис. 10. Изменение притока свежего воздуха в помещение от времени развития пожара

Описание графика:

Выводы по графику:

Рис. 11. Изменение оттока нагретых газов из помещения от времени развития пожара

Описание графика:

Выводы по графику:

Рис. 12. Изменение разности давлений во времени

Описание графика:

Выводы по графику:







Рис. 13.

Описание графика:

Выводы по графику:

Описание обстановки на пожаре в момент времени 11 минут

Согласно п. 1 ст. 76 ФЗ-123 «Технический регламент о требованиях пожарной безопасности», время прибытия первого подразделения пожарной охраны к месту вызова в городских поселениях и городских округах не должно превышать 10 минут. Таким образом, описание обстановки на пожаре проводится на 11 минуту от начала пожара.

В начальные моменты времени при свободном развитии пожара параметры газовой среды в помещении достигают следующих значений:

Достигается температура 97°С (переходит пороговое значение 70°C);

Дальность видимости практически не изменилась и составляет 64,62 м, т.е. еще не переходит пороговое значение в 20 м;

Парциальная плотность газов составляет:

с= 0,208 кг/м 3 , что меньше предельной парциальной плотности по кислороду;

с= 0,005 кг/м 3 , что меньше предельной парциальной плотности по углекислому газу;

с= 0,4*10 -4 кг/м 3 , что меньше предельной парциальной плотности по угарному газу;

ПРД будет находиться на уровне 0,91 м;

Площадь горения составит 24,17 м 2 .

Таким образом, расчеты показали, что на 11 минуту свободного развития пожара, следующие ОФП достигнут своего предельно допустимого значения: среднеобъемная температура газовой среды (на 10 минуте).

4. Время достижения пороговых и критических значений ОФП

Согласно ФЗ-123 «Технический регламент о требованиях пожарной безопасности», необходимым временем эвакуации считается минимальное время достижения одним из опасных факторов пожара своего критического значения.

Необходимое время эвакуации из помещения по данным математического моделирования

Таблица 2. Время достижения пороговых значений

Пороговые значения

Время достижения, мин

Предельная температура газовой среды t = 70°C

Критическая дальность видимости 1 кр = 20 м

Предельно допустимая парциальная плотность кислорода с = 0,226 кг/м 3

Предельно допустимая парциальная плотность двуокиси углерода (с) пред = (с) пред = 0,11 кг/м 3

не достигается

Предельно допустимая парциальная плотность оксида углерода (с) пред = (с) пред = 1,16*10 -3 кг/м 3

не достигается

Максимальная среднеобъемная температура газовой среды Т m = 237 + 273 = 510 К

Критическая температура для остекления t = 300°C

не достигается

Пороговая температура для тепловых извещателей

ИП-101-1А t пopor = 70°C

В данном случае минимальным временем для эвакуации из помещения склада является время достижения предельной температуры газовой среды, равное 10 мин.

Вывод:

а) охарактеризовать динамику развития отдельных ОФП, последовательность наступления различных событий и в целом описать прогноз развития пожара;

b) сделать вывод о своевременности срабатывания пожарных извещателей, установленных в помещении (см. п. 8 таблица 2). В случае неэффективной работы пожарных извещателей предложить им альтернативу (приложение 3).

Определение времени от начала пожара до блокирования эвакуационных путей опасными факторами пожара

Рассчитаем необходимое время эвакуации для помещения с размерами 60·24·6, пожарной нагрузкой в котором является хлопок в тюках. Начальная температура в помещении 20°С.

Исходные данные:

помещение

свободный объем

безразмерный параметр

температура t 0 = 20 0 С;

вид горючего материала - хлопок в тюках - ТГМ, n=3;

теплота сгорания Q = 16,7 ;

удельная скорость выгорания = 0,0167 ;

скорость распространения пламени по поверхности ГМ;

дымообразующая способность D = 0,6 ;

потребление кислорода = 1,15 ;

выделение диоксида углерода = 0,578 ;

выделение оксида углерода = 0,0052 ;

полнота сгорания ГМ;

другие параметры

коэффициент отражения б = 0,3;

начальная освещенность Е = 50 Лк;

удельная изобарная теплоемкость С р = 1,003?10 -3 МДж/кг?К;

предельная дальность видимости =20 м;

предельные значения концентрации токсичных газов:

0,11 кг/м 3 ;

1,16?10 -3 кг/м 3 ;

Расчет вспомогательных параметров

А = 1,05?? = 1,05?0,0167? (0,0042) 2 = 3,093?10 -7 кг/с 3

В = 353?С р?V/(1-) ??Q = 353?1,003?10 -3 ?6912/(1-0.6)?0,97?16,7 = 377,6 кг

В/А = 377,69/3,093?10 -7 = 1,22?10 9 c 3

Расчет времени наступления ПДЗ ОФП:

1) по повышенной температуре:

2) по потере видимости:

3) по пониженному содержанию кислорода:


4) по углекислому газу СО 2

под знаком логарифма получается отрицательное число, поэтому данный фактор не представляет опасности.

5) по угарному газу СО

под знаком логарифма получается отрицательное число, поэтому данный фактор не представляет опасности.

Критическая продолжительность пожара:

кр = min = 746; 772; = 746 с.

Критическая продолжительность пожара обусловлена временем наступления предельно допустимого значения температуры в помещении.

Необходимое время эвакуации людей из складского помещения:

нв = 0,8* кр /60 = 0,8*746/60 = 9,94 мин.

Сделать заключение о достаточности / недостаточности времени на эвакуацию по данным расчета.

Вывод: сравнить необходимое время эвакуации, полученное различными методами, и, при необходимости, объяснить различия в результатах.

5. Расчет динамики ОФП для уровня рабочей зоны. Анализ обстановки на пожаре на момент времени 11 минут

Уровень рабочей зоны согласно ГОСТ 12.1.004-91 «Пожарная безопасность. Общие требования» принимается равным 1,7 метра.

Связь между локальными и среднеобъемными значениями ОФП по высоте помещения имеет следующий вид:

(ОФП? ОФП о) = (ОФП? ОФП о)·Z,

где ОФП? локальное (пороговое) значение ОФП;

ОФП о? начальное значение ОФП;

ОФП? среднеобъемное значение опасного фактора;

Z ? безразмерный параметр, вычисленный по формуле (см. п. 4.2).

Таблица 3. Динамика развития ОФП на уровне рабочей зоны

Время, мин

Площадь пожара составляет 24,17 м.

Температура на уровне рабочей зоны составляет 52,4 0 С, что не достигает ПДЗ, равное 70 0 С.

Дальность видимости в помещении не изменилась и составляет

2,38/0,00042 = 5666 м.

Концентрация кислорода в норме: 22,513 масс%.

Парциальные плотности О 2 , СО и СО 2 на уровне рабочей зоны равны соответственно:

1,09948?22,513/100 = 0,247 кг/м 3 ;

1,09948?0,00211/100 = 2,3*10 -5 кг/м 3 ;

1,09948?0,22328/100 = 0,00245 кг/м 3 .

Таким образом, расчеты показали, что парциальная плотность кислорода находится выше ПДЗ, а токсичных газов - ниже.


Рис. 14.

На 11 минуте горения газообмен протекает со следующими показателями: приток холодного воздуха составляет 3,26 кг/с, а отток нагретых газов из помещения - 10,051 кг/с.

В верхней части дверного проема идет отток задымленных нагретых газов из помещения, плоскость равных давлений находится на уровне 1,251 м, что ниже уровня рабочей зоны.

Вывод: на основании результатов расчетов дать подробную характеристику оперативной обстановки на момент прибытия пожарных подразделений, предложить меры по проведению безопасной эвакуации людей.

Общий вывод по работе

Сделать общий вывод по работе, включающий:

а) краткое описание объекта;

b) общая характеристика динамики ОФП при свободном развитии пожара;

c) сравнение критического времени наступления ПДЗ по опасным факторам пожара согласно расчетам компьютерной программы INTMODEL и методики определения времени от начала пожара до блокирования эвакуационных путей в результате распространения на них опасных факторов пожара согласно приложению №5 к приказу МЧС России от 10.07.2009 №404;

d) анализ срабатывания установленных в помещении пожарных извещателей при необходимости предложения по их замене;

e) характеристика оперативной обстановки на момент прибытия пожарных подразделений, предложения по проведению безопасной эвакуации людей;

f) вывод о целесообразности и перспективах использования компьютерных программ для расчета динамики ОФП при пожаре.

В начальной стадии пожара наблюдается специфический режим газообмена. Особенности этого режима заключаются в том, что процесс газообмена идет в одном направлении через все имеющиеся проемы и щели. Поступление воздуха в помещение из окружающей среды в этот период развития пожара совсем отсутствует. Лишь спустя некоторое время, когда средняя температура среды в помещении достигает определенного значения. Процесс газообмена становится двусторонним, т.е. через одни проемы из помещения вытекают нагретые газы, а через другие поступает свежий воздух. Продолжительность начальной стадии пожара, при которой наблюдается «односторонний» газообмен, зависит от размеров проемов.

При условии отсутствия поступление воздуха извне в дифференциальных уравнениях пожара можно отбросить члены, содержащие расход воздуха (G B = 0.).

Кроме того, будем рассматривать негерметичные помещения, в которых среднее давление среды остается практически постоянным, равным давлению наружного воздуха, так что с достаточной точностью можно принять, что:

где r 0 , Т 0 – плотность и температура среды перед началом пожара; r m , Т m – соответственно средние значения плотности и температуры среды в рассматриваемый момент времени; Р m – среднее давление в помещении.

Интервал времени, в течении которого наблюдается односторонний газообмен, является относительно небольшим. Средняя температура и концентрация кислорода в помещении изменяются за этот промежуток времени незначительно. По этой причине можно принять, что величины h, D, R в этой стадии пожара остаются неизменными. Кроме того, примем, что п 1 = п 2 = n 3 = т = 1 и V = const.

С учетом сказанного, уравнения пожара для начальной его стадии в помещении с малой проемностью, принимают следующий вид:

; (2)

, (4)

, (5)

(6)

В дальнейшем принимается еще одно допущение:

с р = с рВ = const. (7)

Для того чтобы получить аналитическое решение этих уравнений, используется прием, заключающийся в следующем. Поскольку рассматривается процесс развития пожара на относительно малом промежутке времени, то можно принять, что отношение теплового потока в ограждении к тепловыделению есть величина постоянная, равна своему среднему значению на этом интервале:

(8)

где Q пож = ψ η Q н;

τ * – время окончания начальной стадии пожара;

φ – коэффициентом теплопотерь.

Из уравнения баланса энергии (3) можно определить расход выталкиваемых газов из помещения.

С учетом уравнений (3) и (8) расход выталкиваемых газов в каждый момент времени определяется по формуле:



(9)

Следовательно, для начальной стадии пожара с учетом условия (1) расход выталкиваемых газов определяем по формуле:

(10)

Таким образом, уравнения пожара для начальной его стадии в помещении примут вид:

, (11)

, (12)

, (13)

. (14)

Эти уравнения представляют собой частный случай основной (неупрощенной) системы уравнений пожара.

Зависимость среднеобъемной плотности от времени можно описать следующим выражением:

, (15)

тогда процесс нарастания средней температуры среды в помещении описывается формулой:

, (16)

где

где b Г – ширина фронта пламени, м;

,

где – теплота сгорания, Дж·кг -1 ;

с p – теплоемкость газовой среды в помещении, Дж∙кг -1 ·K -1 (1,01);

ρ 0 , Т 0 – начальное значение плотности (кг·м -3) и температуры (К) соответственно;

V – свободный объем помещения, м 3 ;

Из дифференциального уравнения (12), описывающего процесс снижения парциальной плотности кислорода в помещении, находим парциальную плотность кислорода в зависимости от времени:

. (17)

где ρ 0 = 0,27 кг·м -3 , ρ 01 / ρ 0 = 0,23.

С использованием дифференциального уравнения (13) определим среднюю парциальную плотность токсичного газа в зависимости от времени по формуле:

, (18)

где – пороговая плотность, кг·м -3 .

Наконец рассмотрим дифференциальное уравнение (14), описывающее изменение критической плотности дыма в помещении. Разделим переменные в этом уравнении и затем, интегрируя с учетом начального условия, получаем формулу для определения оптической концентрации дыма:



, (19)

где .

Значение μ * зависит от свойств горючего материала (ГМ). Например, для древесины при ее горении на открытом воздухе μ * ≤ 5 Нп · м -1 .

Оптическая плотность дыма связана с дальностью видимости следующим соотношением:

.

где l вид – дальность видимости, м.

3 ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Используя основные теоретические положения рассчитать согласно варианту исходных данных (таблица 3):

а) парциальную плотность кислорода в зависимости от времени;

б) среднюю парциальную плотность токсичного газа;

в) оптическую концентрацию дыма;

г) оптическую плотность дыма.

2. Занести в таблицу полученные промежуточные и конечные результаты.

3. Подготовить отчет.

1) Краткие теоретические сведения.

2) Исходные данные.

3) Количественные показатели произведенных расчетов.

4) Ответы на контрольные вопросы.

Работа выполняется на листах формата А4, печатным текстом, в виде пояснительной записки содержащей краткую реферативную часть, требуемые расчеты и графики. Оформление работы должно соответствовать общим требованиям, предъявляемым к оформлению работ студентов в университете.

Таблица 3 – Данные по вариантам для выполнения расчета начальной стадии пожара

№ варианта Размер помещения t о, о С Высота рабочей зоны, h , м Горючее вещество Масса, кг Форма поверхности горения (таблица 4) Период развития пожара, мин Ширина фронта пламени, м Площадь горения, F , м 2
20х10х5 1,7 бензин в
15х15х6 ацетон в
10х30х4 1,8 древесина б
20х20х4 2,1 полиэтилен б
40х10х3 1,8 резина б
25х30х5 2,0 турбинное масло в
30х10х5 1,8 лен б
20х20х6 2,5 дизельное топливо в
40х10х5 2,2 хлопок а
30х8х4 1,9 хлопок а
20х10х4 2,3 бензин в
20х20х3 1,8 толуол а
30х6х3 1,7 древесина а
30х10х5 2,4 полиэтилен а
20х10х6 2,0 резина а
25х10х4 1,8 турбинное масло в
30х10х5 2,2 лен а
15х15х4 2,0 дизельное топливо в
30х10х4 2,3 пенопласт а
30х20х5 2,0 хлопок а
30х30х4 1,8 бензин в
40х10х4 2,0 толуол а
25х10х3 2,2 древесина а
25х25х4 2,0 полиэтилен б
30х20х3 2,0 резина а
25х25х4 1,8 турбинное масло в
40х10х5 2,4 лен а
20х20х6 2,0 дизельное топливо в
25х10х4 1,8 пенопласт б
30х20х6 2,2 хлопок а

Таблица 4 – Форма поверхности горения

Таблица 5 – Средняя скорость выгорания, низшая теплота сгорания, дымообразующая способность, удельное потребление газов и линейная скорость распространения пламени веществ и материалов

Вещества и материалы Y F , удельная массовая скорость выгорания, х10 –3 , кг м –2 с –1 Низшая теплота сгорания, Q , кДж·кг –1 Дымообразующая способность, D m , м 2 ·кг –1 Удельное потребление газов, L , кг·кг –1 Линейная скорость распространения пламени, J·10 2 , м/с
Бензин 61,7 0,25 0,45
Ацетон 59,6 0,26 0,44
Дизельное топливо 42,0 0,4
Турбинное масло 0,282 0,5
Толуол 0,388
Древесина 39,3 1,15
Резина 11,2 1,7-2
Пенопласт ПВХ-9 2,8 0,37
Полиэтилен 10,3 0,32
Хлопок 2,4 2,3 4,2
Лен 21,3 33,7 1,83

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Стадии пожара и их характеристики.

2. Процесс горения и основными условиями.

3. Массовая скорость выгорания и от чего зависит.

4. Линейная скорость распространения горения

5. Температура пожара в ограждениях и на открытых пространствах

6. Дым – это.

7. Развитие пожара и периоды

ЛИТЕРАТУРА

1. Кошмаров Ю.А. Прогнозирование опасных факторов пожара в помещении. Учебное пособие. АГПС МВД РФ, М. - 2000.

2. Применение полевого метода математического моделирования пожаров в помещениях. Методические рекомендации. ФГУ ВНИИПО МЧС России, 2003.

3. Пузач С.В. Методы расчета тепломассообмена при пожаре в помещении и их применение при решении практических задач пожаровзрывобезопасности. Монография. - М.: Академия ГПС МЧС России, 2005. - 336 с.

4. Пузач С.В., Смагин А.В., Лебедченко О.С., Абакумов Е.С. Новые представления о расчете необходимого времени эвакуации людей и об эффективности использования портативных фильтрующих самоспасателей при эвакуации на пожарах. Монография. - М.: Академия ГПС МЧС России, 2007. 222 с.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1.2 Компьютерный эксперимент

Заключение

Список литературы

Введение

Расчет пожара (прогнозирование опасных факторов) необходим для оценки своевременности эвакуации и разработке мероприятий по ее совершенствованию, при создании и совершенствовании систем сигнализации, оповещения и тушения пожаров, при разработке планов пожаротушения (планирования боевых действий пожарных подразделений при пожаре), для оценки фактических пределов огнестойкости, проведении пожарно-технических экспертиз и других целей.

В развитии пожара в помещении обычно выделяют три стадии:

Начальная стадия - от возникновения локального неконтролируемого очага горения до полного охвата помещения пламенем; при этом средняя температура среды в помещении имеет не высокие значения, но внутри и вокруг зоны горения температура такова, что скорость тепловыделения выше скорости отвода тепла из зоны горения, что обуславливает само ускорение процесса горения;

Стадия полного развития пожара - горят все горючие вещества и материалы, находящиеся в помещении; интенсивность тепловыделения от горящих объектов достигает максимума, что приводит и к быстрому нарастанию температуры среды помещения до максимальных значений;

Стадия затухания пожара - интенсивность процесса горения в помещении снижается из-за расходования находящейся в нём массы горючих материалов или воздействия средств тушения пожара.

Однако в любом случае, как показывает уравнение «стандартного пожара», температура в очаге пожара через 1,125 мин достигает значения 365оС. Поэтому очевидно, что возможное время эвакуации людей из помещений не может превосходить продолжительности начальной стадии пожара.

пожар эвакуация модель

1. Компьютерный эксперимент, его преимущества и недостатки по сравнению с физическим экспериментом

1.1 Математическая модель развития пожара

Пожар в помещении сопровождается изменением состава и параметров газовой среды, заполняющей помещение. Газовая среда в помещении с проемами, соединяющими его с наружной атмосферой, как объект исследования есть открытая термодинамическая система. В газовой среде, заполняющей при пожаре помещение, в любой момент времени сохраняется локальное равновесие.

Состояние газовой среды при пожаре в помещении характеризуется полями локальных термодинамических параметров состояния. Однако его можно характеризовать и с помощью среднеобъемных термодинамических параметров состояния, связанных между собой уравнением, вытекающим из условия существования локального равновесия. С помощью среднеобъемных параметров состояния можно проследить общие закономерности процесса развития пожара, выявить его наиболее характерные особенности и обусловливающие их факторы.

Пожар представляет собой явление, недостаточно строго определенное, стохастическое, и поэтому невозможно предугадать и контролировать всю совокупность параметров, определяющих потенциальную силу пожара.

Поэтому представляется целесообразным при моделировании использовать метод, предназначенный для описания динамики развития пожара на стадии роста. В силу стохастичности процесса пожара предлагаемый метод схож с другими вероятностными методами - по оценке сейсмической опасности, волновой активности океана и т.п. В качестве основных характеристик стадии роста пожара выбраны: - период времени от начала эксперимента до воспламенения образца материала; - период времени от воспламенения до достижения пламенем потолка; - период времени от последнего момента до полного охвата пламенем помещения, часто соответствующего появлению пламени в проемах. Одним из важных следствий метода является то, что фактор вентиляции для модельного пожара в помещении должен рассматриваться как неопределенная переменная, исследуемая с помощью вероятностных методов. Если период времени в общем случае может изменяться в зависимости от вида и расположения начального источника пожара, то два других периода времени достаточно определенно могут характеризовать конкретный процесс развития пожара. Введение временных показателей как основных элементов для сравнения процессов развития пожара при использовании различных материалов можно считать достоинством метода, позволяющим также сопоставлять результаты экспериментов, проведенных в различных лабораториях.

При этом очевидно, необходим учет того, какой является пожарная нагрузка в помещении - локальной или рассредоточенной, а также возможность представления математической модели развития пожаров в помещении на уровне среднеинтегральных характеристик. При наличии в помещении технологического оборудования и вентиляционных потоков воздуха возникающий в процессе пожаров турбулентный след в свежей смеси перед фронтом горения приводит к турбулизации процесса и к увеличению площади фронта. Определение скорости горения в этом случае позволит оценить увеличение площади фронта горения и соответственно интенсивность подачи огнетушащих веществ.

Математическая модель развития пожара в помещении на уровне среднеинтегральных характеристик содержит уравнение баланса энергии, основные члены которого - скорость тепловыделения, потери тепла за счет газообмена в помещении и радиации через проемы и, потери тепла в строительные конструкции, теплота пиролиза. Режим пожара определяется соотношением между массовой скоростью входящего через проемы воздуха и массовой скоростью выгорания: при пожар регулируется вентиляцией (ПРВ); при пожар регулируется нагрузкой (ПРН), здесь - стехиометрическое соотношение воздуха и массы топлива.

Для ПРН, для ПРВ

где - коэффициент полноты горения. определяется выражением, где - скорость выгорания вне помещения; - изменение скорости выгорания за счет горения внутри помещения:

Горящая поверхность пожарной нагрузки (ПН) увеличивается согласно выражению

при, при, где - площадь ПН; - инициирующая поверхность горения ПН; -время охвата пламенем всей поверхности ПН. Скорость распространения пламени по ПН принята пропорциональной:, где -ширина проема; - высота плоскости равных давлений. Уравнение баланса энергии решается совместно с уравнением теплопроводности для строительных конструкций при граничных условиях третьего рода.

1.2 Компьютерный эксперимент

01 мая 2009 г. вступил в силу федеральный закон «Технический регламент о требованиях пожарной безопасности», в соответствии с которым проектирование новых зданий может выполняться на основании положений сводов правил («норм добровольного применения»), или на основе расчетов пожарного риска. При пожарном аудите существующих, построенных зданий и сооружений оценка соответствия объектов защиты требованиям пожарной безопасности также может быть проведена путем выполнения положений сводов правил, или расчетом пожарного риска. В связи с этим, большую актуальность имеют вопросы методологии расчетов пожарного риска и оценки достоверности их результатов, источники данных о статистике пожаров, величинам пожарной нагрузки, свойствах горючих материалов, методики и компьютерные модели эвакуации и динамики развития опасных факторов пожаров.

За два года, прошедшие с опубликования утвержденной методики расчета пожарного риска, у специалистов-разработчиков и экспертов накопился опыт практического применения моделирования пожаров для обоснования проектных решений, и для оценки существующих объектов защиты. Вместе с тем выявился спектр вопросов, которые требуют дальнейшего осмысления и уточнения.

Перед строительством любого объекта необходимо решить ряд задач, связанных с его будущей эксплуатацией. Одной из важнейших (а порой и самой важной) задачей является обеспечение требуемого уровня пожарной безопасности. Для решения этой задачи уже долгое время используются упрощенные интегральные методы расчета, которые из-за своих грубых приближений, не позволяют в полной мере оценить угрозу для жизни людей. Современный уровень развития теории тепломассообмена позволил создать математическую модель. А развитие компьютерных технологий позволило создать компьютерную модель пожара.

Вид комнаты до начала пожара

Рисунок №1

Рисунок №2

Визуализация расчетной компьютерной модели с температурной плоскостью, которая позволяет определить температуру в любой точке плоскости

Рисунок №3

В основу математической модели заложены трехмерные нестационарные уравнения, законов сохранения масс, импульса и энергии. Моделирование проводится с учетом множества параметров, основными из которых, являются свойства пожарной нагрузки, теплофизические свойства материалов ограждающих конструкций, действия систем дымоудаления, вентиляции и пожаротушения.

Модель настолько универсальна, что позволяет проводить расчеты для объектов практически любого назначения: жилых, торгово-развлекательных, офисных, промышленных и многих других.

Модель позволяет предсказать наихудший для безопасности людей вариант развития пожара. Это свойство используется для определения необходимого времени эвакуации людей, выдачи рекомендаций по повышению пожарной безопасности объекта, проведения экспертизы объемно-планировочных и конструктивных решений. Моделирование предоставляет возможность проведения оптимизации затрат на системы противопожарной защиты (не снижая уровень пожарной безопасности объекта в целом!), что порой является одним из определяющих факторов для Заказчика.

Техническая характеристика FDS

Первая версия FDS официально была выпущена в феврале 2000 года. На сегодняшний день приблизительно половина приложений модели служит для проектирования систем управления дымом и изучения активации спринклеров и детекторов. Другая половина служит для восстановления картины пожара в жилых и промышленных помещениях. Основной целью FDS на протяжении своего развития было решение прикладных задач пожаробезопасности и в тоже время обеспечение инструментом для изучения фундаментальных процессов при пожаре.

Гидродинамическая модель

FDS численно решает уравнения Навье-Стокса для низкоскоростных температурно-зависимых потоков, особое внимание уделяется распространению дыма и теплопередаче при пожаре. Основным алгоритмом является определенная схема метода предиктора-корректора второго порядка точности по координатам и времени. Турбулентность выполняется с помощью модели Смагоринского «Масштабное моделирование вихрей» (LES). Прямое численное моделирование (DNS) можно выполнять, если лежащая в основе расчетная сетка достаточно точна. Масштабное моделирование вихрей - режим работы по умолчанию.

Модель горения

В большинстве случаев в FDS применяется одноступенчатая химическая реакция, результаты которого передаются через двухпараметрическую модель доли в смеси (mixturefractionmodel). «Доля в смеси» в данном смысле - это скалярная величина, которая предоставляет массовую долю одного или более компонентов газа в данной точке потока. По умолчанию рассчитываются два компонента смеси: массовая доля несгоревшего топлива и массовая доля сгоревшего топлива (т.е. продуктов сгорания). Двухступенчатая химическая реакция с трехпараметрическим разложением доли в смеси раскладывается на одноступенчатые реакции - окисление топлива до монооксида углерода и окисление монооксила до диоксида. Три компонента в данном случае - несгоревшее топливо, масса топлива, которая завершила первый шаг реакции и масса топлива, которая завершила второй шаг реакции. Массовая концентрация всех основных реагентов и продуктов может быть получена с помощью «соотношения состояния». И, наконец, можно использовать многошаговую реакцию с конечной скоростью протекания.

Перенос излучения

Лучистый теплообмен включен в модель посредством решения уравнения переноса излучения для серого газа и, для некоторых ограниченных случаев, с использованием широкодиапазонной модели. Уравнение решается с помощью метода, аналогичного методу конечных объемов для конвективного переноса, соответственно отсюда и название «метод конечных объемов» (FVM). При использовании приблизительно 100 дискретных углов вычисления лучистого теплообмена занимает примерно 20 % общего времени загрузки центрального процессора, небольшой расход задан уровнем сложности лучистого теплообмена. Коэффициенты поглощения сажей и дымом вычислены с помощью узкополосной модели RADCAL. Капли жидкости могут поглощать и рассеивать тепловое излучение. Это крайне важно при использовании распыляющих спринклеров, но имеет значение и для других спринклеров. Коэффициенты поглощения и рассеивания основаны на теории Ми.

Геометрия

FDS решает основные уравнения на прямоугольной сетке. Препятствия обязаны быть прямоугольными, чтобы удовлетворять сетке.

Составные сетки

Этот термин используется для описания более чем одной прямоугольной сетки при вычислении. Несколько сеток стоит задавать, например, в случаях, когда вычислительный домен имеет неправильную форму и его сложно описать с помощью одной сетки.

Граничные условия

На всех твердых поверхностях задаются тепловые граничные условия, плюс данные о горючести материала. Тепло- и массоперенос с поверхности и обратно рассчитывается с помощью эмпирических соотношений, хотя при выполнении прямого численного моделирования (DNS) можно вычислить передачу тепла и массы впрямую.

Программа FDS разрабатывалась почти 25 лет. Однако официально она была выпущена только в 2000 году. С первого ее выпуска выполнялись постоянные обновления, в большой степени, основанные на замечаниях и предложениях от пользователей.

Обнаружив, что модели FDS могут использоваться для вероятностной оценки рисков ядерных установок, комиссия по ядерному регулированию США финансировала обслуживание и развитие FDS.

В России программное обеспечение разработано в поддержку ФЗ№123 "Технический регламент о требованиях пожарной безопасности", в соответствии с "Методикой определения расчетных величин пожарного риска в зданиях, сооружениях и строениях различных классов функциональной пожарной опасности", утвержденная приказом МЧС России № 382 от 30.06.2009 и "Методикой определения расчетных величин пожарного риска на производственных объектах", утвержденная приказом МЧС РФ № 404 от 10.07.2009.

Эватек (моделирование индивидуального движения людей, получение данных о всем процессе эвакуации: время эвакуации людей из здания, время эвакуации из частей здания, плотности потоков в любой момент времени в любой части зданий и другие)

Блок (предназначена для расчета динамики развития опасных факторов пожара по двухзонной модели CFAST согласно Приложения 6 «Методики определения расчетных величин пожарного риска в зданиях, сооружениях и строениях различных классов функциональной пожарной опасности»)

PyroSim - программа предоставляет пользовательский графический интерфейс для моделирования динамики развития опасных факторов пожара полевым методом на основе FireDynamicsSimulator (FDS).

Вим (предназначена для расчета динамики развития опасных факторов пожара по интегральной модели согласно Приложения 6 «Методики определения расчетных величин пожарного риска в зданиях, сооружениях и строениях различных классов функциональной пожарной опасности»

Заключение

Опасности и угрозы всегда указывают на взаимодействие двух сторон:

Той, которая выступает источником и носителем опасности (явление, процесс, субъект, объект);

Той, на которую направлена опасность или угроза - объект, субъект;

Источники опасности - это условия или факторы, которые таят в себе и при определенных условиях сами по себе (либо в различной совокупности) проявляют или обнаруживают враждебные намерения, реальные или потенциально вредные действия. Источники опасности по своей сути имеют естественно-природное (земное), космическое, техническое и социально- экономическое происхождение.

Субъект же - это носитель предметно-практической деятельности и познания (индивид, социальная группа, государство и т.д.), источник активности, направленной на объект и обладает максимальным суверенитетом;

Объектом угроз и опасностей являются человек, общество, государство. Эта триада представляет собой целостную систему.

Человек в системе (и, прежде всего, личность - творец) является высшей целью общественно-политического и социально-экономического развития страны.

Общество - это социальная среда, включающая реальные условия всестороннего развития творчества личности в системе общественных отношений.

Государство представляет собой организационно-политический механизм реализации общественных отношений и обеспечения гарантии и прав граждан в определенных рамках морали и нравственности. Государство должно возвышаться над личностью, так как его задача - создать механизм, чтобы творческое развитие личности на самом деле было высшей национальной целью, с одной стороны, но с другой - государство является владельцем (носителем) живого капитала.

Объектами угроз в государственном масштабе являются практически все сферы жизнедеятельности общества. В любой из них существуют специфические особенности опасности и угроз.

Человек выступает как объект и субъект опасностей и угроз. Диапазон проявлений человеческой сущности многообразен и противоречив. В ней необъяснимо уживаются эгоизм, иррациональность, агрессивность с отрицающими их подвижничеством, жертвенностью, благодеянием. Современный человек не торопится расставаться со своими пороками, выйти за рамки субъективного, индивидуально-алчного мира.

Известно, что мир представляется человеку в виде объективной и субъективной реальности. Человек преобразует природу и изменяет ее сам. Отсюда вывод, что человек одновременно является и субъектом толкования мира и его объектом.

Известное стремление человека жить лучше не получило еще необходимого приложения. Человек пока остается носителем различных по виду опасностей и угроз, регулятором "безопасности".

Таким образом, человек прямо или опосредованно включен в разнообразную, сложноорганизованную систему отношений и процессов, выполняя в них активно-созидательную, пассивно-созерцательную или разрушительную роль.

Список литературы

ГОСТ 12.1.004-91 Пожарная безопасность. Общие требования. -М.: Издательство стандартов, 1992.-78 с.

Драйздел Д Введение в динамику пожара.-М.: Стройиздат, 1990. - 420 с.

Кошмаров Ю. А. Прогнозирование опасных факторов пожара в помещении: Учебное пособие. - М.: Академия ГПС МВД России, 2000. 118 с.

Чешко И.Д. Экспертиза пожаров (объекты, методы, методики исследования). - СПб.: СПбИПБ МВД РФ, 1997.

Размещено на Allbest.ru

Подобные документы

    Описание интегральной математической модели свободного развития пожара в помещении. Динамика опасных факторов пожара в помещении. Определение времени от начала пожара до блокирования эвакуационных путей опасными факторами пожара на примере канцелярии.

    курсовая работа , добавлен 16.02.2016

    Интегральная математическая модель развития пожара. Результаты компьютерного моделирования. Время достижения пороговых и критических значений опасных факторов. Расчет времени эвакуации людей из помещения. Расчет динамики ОФП для уровня рабочей зоны.

    курсовая работа , добавлен 24.08.2011

    Описание математической модели развития пожара в помещении. Прогнозирование обстановки на пожаре к моменту прибытия первых подразделений на его тушение. Определение критической продолжительности пожара и времени блокирования эвакуационных путей.

    курсовая работа , добавлен 21.11.2014

    Описание интегральной математической модели свободного развития пожара в складском помещении. Расчет динамики опасных факторов для уровня рабочей зоны с помощью компьютерной программы Intmodel. Расчет времени, необходимого для эвакуации из помещения.

    методичка , добавлен 09.06.2014

    Нормативно-правовая документация учебного учреждения с учетом требований пожарной безопасности. Определение расчётного времени эвакуации в школе. Исследование процесса возникновения пожара. Разработка мероприятий по повышению пожарной безопасности.

    курсовая работа , добавлен 22.06.2011

    Меры пожарной профилактики и активной пожарной защиты. Четыре условия для возникновения пожара. Этапы развития. Рекомендации в случае возникновения пожара. Первичные и вторичные требования пожарной безопасности. Средства обнаружения и тушения пожара.

    реферат , добавлен 28.01.2009

    Условия возникновения пожара: образование горючего вещества, наличие окислителя, появление источника зажигания. Расчет параметров источников пожара. Оценка необходимого времени эвакуации людей из помещения. Основные меры по предотвращению пожара.

    контрольная работа , добавлен 26.02.2012

    Расчет сил и средств, необходимых для тушения пожара. Виды и особенности пожара в гаражах. Прогнозирование возможной обстановки на пожаре на момент введения первых сил и средств на тушение пожара. Рекомендации должностным лицам по тушению пожара.

    курсовая работа , добавлен 19.04.2012

    Разработка схемы эвакуации учащихся школы. Инструкция по мерам пожарной безопасности и эвакуации, порядок действий в случае пожара. Расчет продолжительности пожара по повышенной температуре и по концентрации кислорода. Расчет времени на эвакуацию.

    курсовая работа , добавлен 13.01.2011

    Расчет времени эвакуации от начала пожара до блокирования эвакуационных путей в результате распространения на них опасных факторов пожара. Определение величин потенциального риска для работников, которые находятся в здании на территории объекта.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ