Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

При проведении теста хи-квадрат проверяется взаимная независимость двух переменных таблицы сопряженности и благодаря этому косвенно выясняется зависимость обоих переменных. Две переменные считаются взаимно независимыми, если наблюдаемые частоты (f 0) в ячейках совпадают с ожидаемыми частотами (f e).

Для того, чтобы провести тест хи-квадрат с помощью SPSS, выполните следующие действия:

  • Выберите в меню команды Analyze (Анализ) › Descriptive Statistics (Дескриптивные статистики) › Crosstabs… (Таблицы сопряженности)
  • Кнопкой Reset (Сброс) удалите возможные настройки.
  • Перенесите переменную sex в список строк, а переменную psyche - в список столбцов.
  • Щелкните на кнопке Cells… (Ячейки). В диалоговом окне установите, кроме предлагаемого по умолчанию флажка Observed , еще флажки Expected и Standardized . Подтвердите выбор кнопкой Continue .
  • Щелкните на кнопке Statistics… (Статистика).

Откроется описанное выше диалоговое окно Crosstabs: Statistics .

  • Установите флажок Chi-square (Хи-квадрат). Щелкните на кнопке Continue , а в главном диалоговом окне - на ОК .

Вы получите следующую таблицу сопряженности.

Пол * Психическое состояние. Таблица сопряженности .

Психическое состояние Total
Крайне неустойчивое Неустойчивое Устойчивое Очень устойчивое
Пол женский Count 16 18 9 1 44
Expected Count 7.9 16.6 17.0 2.5 44.0
Std. Residual 2.9 0.3 -1.9 -0.9
Мужской Count 3 22 32 5 62
Expected Count 11.1 23.4 24.0 3.5 62.0
Std. Residual -2.4 -0.3 1.6 0.8
Total Count 19 40 41 6 106
Expected Count 19.0 40.0 41.0 6.0 106.0

Кроме того, в окне просмотра будут показаны результаты теста хи-квадрат:

Chi-Square Tests (Тесты хи-квадрат)

  • а. 2 cells (25.0%) have expected count less than 5. The minimum expected count is 2.49 (2 ячейки (25%) имеют ожидаемую частоту менее 5. Минимальная ожидаемая частота 2.49.)

Для вычисления критерия хи-квадрат применяются три различных подхода: формула Пирсона, поправка на правдоподобие и тест Мантеля-Хэнзеля. Если таблица сопряженности имеет четыре поля и ожидаемая вероятность менее 5, дополнительно выполняется точный тест Фишера.

Критерий хи-квадрат по Пирсону

Обычно для вычисления критерия хи-квадрат используется формула Пирсона:

Здесь вычисляется сумма квадратов стандартизованных остатков по всем полям таблицы сопряженности. Поэтому поля с более высоким стандартизованным остатком вносят более весомый вклад в численное значение критерия хи-квадрат и, следовательно, - в значимый результат. Согласно правилу, приведенному в разделе 8.7.2, стандартизованный остаток 2 или более указывает на значимое расхождение между наблюдаемой и ожидаемой частотами.

В рассматриваемом нами примере формула Пирсона дает максимально значимую величину критерия хи-квадрат (р<0.001). Если рассмотреть стандартизованные остатки в отдельных полях таблицы сопряженности, то на основе вышеприведенного правила можно сделать вывод, что эта значимость в основном определяется полями, в которых переменная psyche имеет значение "крайне неустойчивое". У женщин это значение сильно повышено, а у мужчин - понижено.

Корректность проведения теста хи-квадрат определяется двумя условиями: во-первых, ожидаемые частоты < 5 должны встречаться не более чем в 20% полей таблицы; во-вторых, суммы по строкам и столбцам всегда должны быть больше нуля.

Однако в рассматриваемом примере это условие выполняется не полностью. Как указывает примечание после таблицы теста хи-квадрат, 25% полей имеют ожидаемую частоту менее 5. Однако, так как допустимый предел4в 20% превышен лишь ненамного и эти поля, вследствие своего очень малого стандартизованного остатка, вносят весьма незначительную долю в величину критерия хи-квадрат, это нарушение можно считать несущественным.

Критерий хи-квадрат с поправкой на правдоподобие

Альтернативой формуле Пирсона для вычисления критерия хи-квадрат является поправка на правдоподобие:

При большом объеме выборки формула Пирсона и подправленная формула дают очень близкие результаты. В нашем примере критерий хи-квадрат с поправкой на правдоподобие составляет 23.688.

Тест Мантеля-Хэнзеля

Дополнительно в таблице сопряженности под обозначением linear-by-linear ("линейный-по-линейному") выводится значение теста Мантеля-Хэнзеля (20.391). Эта форма критерия хи-квадрат с поправкой Мантеля-Хэнзеля - еще одна мера линейной зависимости между строками и столбцами таблицы сопряженности. Она определяется как произведение коэффициента корреляции Пирсона на количество наблюдений, уменьшенное на единицу:

Полученный таким образом критерий имеет одну степень свободы. Метод Мантеля-Хэнзеля используется всегда, когда в диалоговом окне Crosstabs: Statistics установлен флажок Chi-square . Однако для данных, относящихся к с номинальной шкале, этот критерий неприменим.

Описание критерия

Назначения критерия

Критерий «хи-квадрат» Пирсона

Материалы лекции

Тема 6. Выявление различий в распределении признака

Критерий Пирсона: назначение критерия, его описание, область применения, алгоритм расчета.

Критерий Колмогорова–Смирнова для сравнения результатов количественного измерения: назначение критерия, его описание, область применения, алгоритм расчета.

При изучении данной темы необходимо учесть то, что оба критерия непараметрические, они оперируют частотами. Обратите особое внимание на правила принятия решения для рассмотренных критериев: эти правила могут быть противоположны. Внимательно изучите ограничения в применении критериев.

После изучения материала лекции ответьте на контрольные вопросы, ответы занесите в конспект.

Критерий «хи-квадрат» Пирсона может решать несколько задач, в том числе и сравнение распределений.

Критерий χ 2 применяется в двух целях;

1) для сопоставления эмпирического распределения признака с теоре­тическим - равномерным, нормальным или каким-то иным;

2) для сопоставления двух, трех или более эмпирических распределе­ний одного и того же признака, то есть для проверки их однородности;

3) для оценки стохастической (вероятностной) независимости в системе случайных событий и т.д.

Критерий χ 2 отвечает на вопрос о том, с одинаковой ли частотой встречаются разные значения признака в эмпирическом и теоретическом распределениях или в двух и более эмпирических распределениях.

Преимущество метода состоит в том, что он позволяет сопостав­лять распределения признаков, представленных в любой шкале, начиная от шкалы наименований. В самом простом случае альтерна­тивного распределения ("да - нет", "допустил брак - не допустил бра­ка", "решил задачу - не решил задачу" и т. п.) мы уже можем приме­нить критерий χ 2 .

1. Объем выборки должен быть достаточно большим: N>30. При N<30 критерий χ 2 дает весьма приближенные значения. Точность крите­рия повышается при больших N.

2. Теоретическая частота для каждой ячейки таблицы не должна быть меньше 5: f ≥ 5. Это означает, что если число разрядов задано зара­нее и не может быть изменено, то мы не можем применять метод χ 2 , не накопив определенного минимального числа наблюдений. Ес­ли, например, мы хотим проверить наши предположения о том, что частота обращений в телефонную службу Доверия неравномерно распределяются по 7 дням недели, то нам потребуется 5-7=35 обра­щений. Таким образом, если количество разрядов (k) задано зара­нее, как в данном случае, минимальное число наблюдений (N min) оп­ределяется по формуле: .



3. Выбранные разряды должны "вычерпывать" все распределение, то есть охватывать весь диапазон вариативности признаков. При этом группировка на разряды должна быть одинаковой во всех сопостав­ляемых распределениях.

4. Необходимо вносить "поправку на непрерывность" при сопоставле­нии распределений признаков, которые принимают всего 2 значения. При внесении поправки значение χ 2 , уменьшается (см. пример с по­правкой на непрерывность).

5. Разряды должны быть неперекрещивающимися: если наблюдение отнесено к одному разряду, то оно уже не может быть отнесено ни к какому другому разряду. Сумма наблюдений по разрядам всегда должна быть равна общему количеству наблюдений.

Алгоритм расчета критерия χ 2

1. Составить таблицу взаимной сопряженности значений признаков следующего вида (по сути это двумерный вариационный ряд, в котором указываются частоты появления совместных значений признака) - таблица 19. В таблице располагаются условные частоты, которые мы обозначим в общем виде как f ij . Например, число градаций признака х равно 3 (k=3), число градаций признака у равно 4 (m=4); тогда i меняется от 1 до k, а j меняется от 1 до m.

Таблица 19

х i у j х 1 х 2 х 3
у 1 f 11 f 21 f 31 f –1
у 2 f 12 f 22 f 32 f –2
у 3 f 13 f 23 f 33 f –3
у 4 f 14 f 24 f 34 f –4
f 1– f 2– f 3– N

2. Далее для удобства расчетов преобразуем исходную таблицу взаимной сопряженности в таблицу следующего вида (таблица 20), располагая столбики с условными частотами один под другим: Занести в таблицу наименования разрядов (столбцы 1 и 2) и соответствующие им эмпирические частоты (3-й столбец).

Таблица 20

х i у j f ij f ij * f ij – f ij * (f ij – f ij *) 2 (f ij – f ij *) 2 / f ij *
1 2 3 4 5 6 7
х 1 у 1 f 11 f 11 *
х 1 у 2 f 12 f 12 *
х 1 у 3 f 13 f 13 *
х 1 у 4 f 14 f 14 *
х 2 у 1 f 21 f 21 *
х 2 у 2 f 22 f 22 *
х 2 у 3 f 23 f 23 *
х 2 у 4 f 24 f 24 *
х 3 у 1 f 31 f 31 *
х 3 у 2 f 32 f 32 *
х 3 у 3 f 33 f 33 *
х 3 у 4 f 34 f 34 *
∑=………….

3. Рядом с каждой эмпирической частотой записать теоретическую частоту (4-й столбец), которая вычисляется по следующей формуле (итоговая частоты по соответствующей строчке умножается на итоговую частоту по соответствующему столбику и делится на общее количество наблюдений):

5. Определить число степеней свободы по формуле: ν=(k-1)(m-1) , где k - количество разрядов признака х , m - количество разрядов признака у .

Если ν=1, внести поправку на "непрерывность" и записать её в столбце 5а.

Поправка на непрерывность состоит в том, что от разности между условной и теоретической частотой отнимается еще 0,5. Тогда заголовки столбиков в нашей таблице будет выглядеть следующим образом (таблица 21):

Таблица 21

х у f ij f ij * f ij – f ij * f ij – f ij * – 0,5 (f ij – f ij * – 0,5) 2 (f ij – f ij * – 0,5) 2 / f ij *
1 2 3 4 5 6 7

6. Возвести в квадрат полученные разности и занести их в 6-й столбец.

7. Разделить полученные квадраты разностей на теоретическую часто­ту и записать результаты в 7-й столбец.

8. Просуммировать значения 7-го столбца. Полученную сумму обо­значить как χ 2 эмп.

9. Правило принятия решения:

Расчетное значение критерия необходимо сравнить с критическим (или табличным) значением. Критическое значение находится в зависимости от числа степеней свободы по таблице критических значений критерия χ 2 Пирсона (см. Приложение 1.6).

Если χ 2 расч ≥ χ 2 табл, то рас­хождения между распределениями статистически достоверны, или признаки изменяются согласованно, или связь между признаками статистически значима.

Если χ 2 расч < χ 2 табл, то расхождения между рас­пределениями статистически недостоверны, или признаки изменяются несогласованно, или связи между признаками нет.

В практике биологических исследований часто бывает необ­ходимо проверить ту или иную гипотезу, т. е. выяснить, насколь­ко полученный экспериментатором фактический материал под­тверждает теоретическое предположение, насколько анализиру­емые данные совпадают с теоретически ожидаемыми. Возника­ет задача статистической оценки разницы между фактическими данными и теоретическим ожиданием, установления того, в ка­ких случаях и с какой степенью вероятности можно считать эту разницу достоверной и, наоборот, когда ее следует считать не­существенной, незначимой, находящейся в пределах случайнос­ти. В последнем случае сохраняется гипотеза, на основе кото­рой рассчитаны теоретически ожидаемые данные или показа­тели. Таким вариационно-статистическим приемом проверки гипо­тезы служит метод хи-квадрат (χ 2). Этот показатель часто на­зывают «критерием соответствия» или «критерием согласия» Пирсона. С его помощью можно с той или иной вероятностью судить о степени соответствия эмпирически полученных данных теоретически ожидаемым.

С формальных позиций сравниваются два вариационных ряда, две совокупности: одна – эмпирическое распределение, другая представляет собой выборку с теми же параметрами (n , M , S и др.), что и эмпирическая, но ее частотное распределение построено в точном соответствии с выбранным теоретическим законом (нормальным, Пуассона, биномиальным и др.), которому предположительно подчиняется поведение изучаемой случайной величины.

В общем виде формула критерия соответствия может быть записана следующим образом:

где a – фактическая частота наблюдений,

A – теоретически ожидаемая частота для данного класса.

Нулевая гипотеза предполагает, что достоверных различий между сравниваемыми распределениями нет. Для оценки существенности этих различий следует обра­титься к специальной таблице критических значений хи-квад­рат (табл. 9П ) и, сравнив вычисленную величину χ 2 с табличной, решить, достоверно или не достоверно отклоня­ется эмпирическое распределение от теоретического. Тем самым гипотеза об отсутствии этих различий будет либо опровергнута, либо оставлена в силе. Если вычисленная величина χ 2 равна или превышает табличную χ ² (α , df ) , решают, что эмпирическое распределение от теоретического отличается достоверно. Тем самым гипотеза об отсутствии этих различий будет опровергнута. Если же χ ² < χ ² (α , df ) , нулевая гипотеза остается в силе. Обычно принято считать допустимым уро­вень значимости α = 0.05, т. к. в этом случае остается только 5% шансов, что нулевая гипотеза правильна и, следовательно, есть достаточно оснований (95%), чтобы от нее отказаться.


Определенную проблему составляет правильное определение числа степеней свободы (df ), для которых из таблицы берут значения критерия. Для определения числа степеней свободы из общего числа классов k нужно вычесть число ограничений (т. е. число параметров, использованных для расчета теоретических частот).

В зависимости от типа распределения изучаемого признака формула для расчета числа степеней свободы будет меняться. Для альтернативного распределения (k = 2) в расчетах участвует только один параметр (объем выборки), следовательно, число степеней свободы составляет df = k −1=2−1=1. Для полиномиального распределения формула аналогична: df = k −1. Для проверки соответствия вариационного ряда распределению Пуассона используются уже два параметра – объем выборки и среднее значение (числен­но совпадающее с дисперсией); число степеней свободы df = k −2. При проверке соответ­ствия эмпирического распределения вариант нормальному или биномиальному закону число степеней свободы берется как число фактических классов минус три условия построения рядов – объем выборки, сред­няя и дисперсия, df = k −3. Сразу стоит отметить, что критерий χ² работает только для выборок объемом не менее 25 вариант , а частоты отдельных классов должны быть не ниже 4 .

Вначале проиллюстрируем применение критерия хи-квадрат на примере анали­за альтернативной изменчивости . В одном из опытов по изуче­нию наследственности у томатов было обнаружено 3629 крас­ных и 1176 желтых плодов. Теоретическое соотношение частот при расщеплении признаков во втором гибридном поколении должно быть 3:1 (75% к 25%). Выполняется ли оно? Иными словами, взята ли данная выборка из той генеральной совокупности, в которой соотношение частот 3:1 или 0.75:0.25?

Сформируем таблицу (табл. 4), заполнив значениями эмпирических частот и результатами расчета теоретических частот по формуле:

А = n∙p,

где p – теоретические частости (доли вариант данного типа),

n – объем выборки.

Например, A 2 = n∙p 2 = 4805∙0.25 = 1201.25 ≈ 1201.

​ Критерий χ 2 Пирсона – это непараметрический метод, который позволяет оценить значимость различий между фактическим (выявленным в результате исследования) количеством исходов или качественных характеристик выборки, попадающих в каждую категорию, и теоретическим количеством, которое можно ожидать в изучаемых группах при справедливости нулевой гипотезы. Выражаясь проще, метод позволяет оценить статистическую значимость различий двух или нескольких относительных показателей (частот, долей).

1. История разработки критерия χ 2

Критерий хи-квадрат для анализа таблиц сопряженности был разработан и предложен в 1900 году английским математиком, статистиком, биологом и философом, основателем математической статистики и одним из основоположников биометрики Карлом Пирсоном (1857-1936).

2. Для чего используется критерий χ 2 Пирсона?

Критерий хи-квадрат может применяться при анализе таблиц сопряженности , содержащих сведения о частоте исходов в зависимости от наличия фактора риска. Например, четырехпольная таблица сопряженности выглядит следующим образом:

Исход есть (1) Исхода нет (0) Всего
Фактор риска есть (1) A B A + B
Фактор риска отсутствует (0) C D C + D
Всего A + C B + D A + B + C + D

Как заполнить такую таблицу сопряженности? Рассмотрим небольшой пример.

Проводится исследование влияния курения на риск развития артериальной гипертонии. Для этого были отобраны две группы исследуемых - в первую вошли 70 человек, ежедневно выкуривающих не менее 1 пачки сигарет, во вторую - 80 некурящих такого же возраста. В первой группе у 40 человек отмечалось повышенное артериальное давление. Во второй - артериальная гипертония наблюдалась у 32 человек. Соответственно, нормальное артериальное давление в группе курильщиков было у 30 человек (70 - 40 = 30) а в группе некурящих - у 48 (80 - 32 = 48).

Заполняем исходными данными четырехпольную таблицу сопряженности:

В полученной таблице сопряженности каждая строчка соответствует определенной группе исследуемых. Столбцы - показывают число лиц с артериальной гипертонией или с нормальным артериальным давлением.

Задача, которая ставится перед исследователем: имеются ли статистически значимые различия между частотой лиц с артериальным давлением среди курящих и некурящих? Ответить на этот вопрос можно, рассчитав критерий хи-квадрат Пирсона и сравнив получившееся значение с критическим.

3. Условия и ограничения применения критерия хи-квадрат Пирсона

  1. Сопоставляемые показатели должны быть измерены в номинальной шкале (например, пол пациента - мужской или женский) или в порядковой (например, степень артериальной гипертензии, принимающая значения от 0 до 3).
  2. Данный метод позволяет проводить анализ не только четырехпольных таблиц, когда и фактор, и исход являются бинарными переменными, то есть имеют только два возможных значения (например, мужской или женский пол, наличие или отсутствие определенного заболевания в анамнезе...). Критерий хи-квадрат Пирсона может применяться и в случае анализа многопольных таблиц, когда фактор и (или) исход принимают три и более значений.
  3. Сопоставляемые группы должны быть независимыми, то есть критерий хи-квадрат не должен применяться при сравнении наблюдений "до-"после". В этих случаях проводится тест Мак-Немара (при сравнении двух связанных совокупностей) или рассчитывается Q-критерий Кохрена (в случае сравнения трех и более групп).
  4. При анализе четырехпольных таблиц ожидаемые значения в каждой из ячеек должны быть не менее 10. В том случае, если хотя бы в одной ячейке ожидаемое явление принимает значение от 5 до 9, критерий хи-квадрат должен рассчитываться с поправкой Йейтса . Если хотя бы в одной ячейке ожидаемое явление меньше 5, то для анализа должен использоваться точный критерий Фишера .
  5. В случае анализа многопольных таблиц ожидаемое число наблюдений не должно принимать значения менее 5 более чем в 20% ячеек.

4. Как рассчитать критерий хи-квадрат Пирсона?

Для расчета критерия хи-квадрат необходимо:

Данный алгоритм применим как для четырехпольных, так и для многопольных таблиц.

5. Как интерпретировать значение критерия хи-квадрат Пирсона?

В том случае, если полученное значение критерия χ 2 больше критического, делаем вывод о наличии статистической взаимосвязи между изучаемым фактором риска и исходом при соответствующем уровне значимости.

6. Пример расчета критерия хи-квадрат Пирсона

Определим статистическую значимость влияния фактора курения на частоту случаев артериальной гипертонии по рассмотренной выше таблице:

  1. Рассчитываем ожидаемые значения для каждой ячейки:
  2. Находим значение критерия хи-квадрат Пирсона:

    χ 2 = (40-33.6) 2 /33.6 + (30-36.4) 2 /36.4 + (32-38.4) 2 /38.4 + (48-41.6) 2 /41.6 = 4.396.

  3. Число степеней свободы f = (2-1)*(2-1) = 1. Находим по таблице критическое значение критерия хи-квадрат Пирсона, которое при уровне значимости p=0.05 и числе степеней свободы 1 составляет 3.841.
  4. Сравниваем полученное значение критерия хи-квадрат с критическим: 4.396 > 3.841, следовательно зависимость частоты случаев артериальной гипертонии от наличия курения - статистически значима. Уровень значимости данной взаимосвязи соответствует p<0.05.

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию города Иркутска

Байкальский государственный университет экономики и права

Кафедра Информатики и Кибернетики

Распределение "хи-квадрат" и его применение

Колмыкова Анна Андреевна

студентка 2 курса

группы ИС-09-1

Для обработки полученных данных используем критерий хи-квадрат.

Для этого построим таблицу распределения эмпирических частот, т.е. тех частот, которые мы наблюдаем:

Теоретически, мы ожидаем, что частоты распределятся равновероятно, т.е. частота распределится пропорционально между мальчиками и девочками. Построим таблицу теоретических частот. Для этого умножим сумму по строке на сумму по столбцу и разделим получившееся число на общую сумму (s).


Итоговая таблица для вычислений будет выглядеть так:

χ2 = ∑(Э - Т)² / Т

n = (R - 1), где R – количество строк в таблице.

В нашем случае хи-квадрат = 4,21; n = 2.

По таблице критических значений критерия находим: при n = 2 и уровне ошибки 0,05 критическое значение χ2 = 5,99.

Полученное значение меньше критического, а значит принимается нулевая гипотеза.

Вывод: учителя не придают значение полу ребенка при написании ему характеристики.

Приложение

Критические точки распределения χ2

Таблица 1

Заключение

Студенты почти всех специальностей изучают в конце курса высшей математики раздел "теория вероятностей и математическая статистика", реально они знакомятся лишь с некоторыми основными понятиями и результатами, которых явно не достаточно для практической работы. С некоторыми математическими методами исследования студенты встречаются в специальных курсах (например, таких, как "Прогнозирование и технико-экономическое планирование", "Технико-экономический анализ", "Контроль качества продукции", "Маркетинг", "Контроллинг", "Математические методы прогнозирования", "Статистика" и др. – в случае студентов экономических специальностей), однако изложение в большинстве случаев носит весьма сокращенный и рецептурный характер. В результате знаний у специалистов по прикладной статистике недостаточно.

Поэтому большое значение имеет курс "Прикладная статистика" в технических вузах, а в экономических вузах – курса "Эконометрика", поскольку эконометрика – это, как известно, статистический анализ конкретных экономических данных.

Теория вероятности и математическая статистика дают фундаментальные знания для прикладной статистики и эконометрики.

Они необходимы специалистам для практической работы.

Я рассмотрела непрерывную вероятностную модель и постаралась на примерах показать ее используемость.

Список используемой литературы

1. Орлов А.И. Прикладная статистика. М.: Издательство "Экзамен", 2004.

2. Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высшая школа, 1999. – 479с.

3. Айвозян С.А. Теория вероятностей и прикладная статистика, т.1. М.: Юнити, 2001. – 656с.

4. Хамитов Г.П., Ведерникова Т.И. Вероятности и статистика. Иркутск: БГУЭП, 2006 – 272с.

5. Ежова Л.Н. Эконометрика. Иркутск: БГУЭП, 2002. – 314с.

6. Мостеллер Ф. Пятьдесят занимательных вероятностных задач с решениями. М. : Наука, 1975. – 111с.

7. Мостеллер Ф. Вероятность. М. : Мир, 1969. – 428с.

8. Яглом А.М. Вероятность и информация. М. : Наука, 1973. – 511с.

9. Чистяков В.П. Курс теории вероятностей. М.: Наука, 1982. – 256с.

10. Кремер Н.Ш. Теория вероятностей и математическая статистика. М.: ЮНИТИ, 2000. – 543с.

11. Математическая энциклопедия, т.1. М.: Советская энциклопедия, 1976. – 655с.

12. http://psystat.at.ua/ - Статистика в психологии и педагогике. Статья Критерий Хи-квадрат.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ