Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

На практике для описания процессов, происходящих в газах, используют макроскопические параметры - давление р , объем V итемпературу Т . Эти величины характеризуют состояние газа и легко измеряются различными приборами. Между ними устанавливаются соотношения в виде газовых законов, которые мы рассмотрим позже.

Понятие температуры тесно связано с понятием теплового равновесия. Тепловое равновесие - это такое состояние системы тел, находящихся в тепловом контакте, при котором не происходит теплопередачи от одного тела к другому, и все макроскопические параметры тел остаются неизменными. Температура - это физический параметр, одинаковый для всех тел, находящихся в тепловом равновесии.

Для измерения температуры используются физические приборы - термометры, в которых о величине температуры судят по изменению какого-либо физического параметра. В различных конструкциях термометров используются разнообразные физические свойства вещества (например, изменение линейных размеров твердых тел или изменение электрического сопротивления проводников при нагревании). Термометры должны быть откалиброваны. Для этого их приводят в тепловой контакт с телами, температуры которых считаются известными. По температурной шкале Цельсия точке плавления льда приписывается температура 0 °С, а точке кипения воды - 100 °С.

Английский физик У. Кельвин в 1848 г. предложил использовать точку нулевого давления газа для построения новой температурной шкалы - шкалы Кельвина . В этой шкале единица измерения температуры такая же, как и в шкале Цельсия, но нулевая точка сдвинута:

T = t + 273,15. (7.10)

В системе СИ принято единицу измерения температуры по шкале Кельвина называть кельвином и обозначать буквой K.

Температурная шкала Кельвина называется абсолютной шкалой температур. Она оказывается наиболее удобной при построении физических теорий.

Экспериментально доказано, что давление разреженного газа в сосуде постоянного объема V изменяется прямо пропорционально его абсолютной температуре: p ~ T. С другой стороны, опыт показывает, что при неизменных объеме V и температуре T давление газа изменяется прямо пропорционально концентрации n молекул газа, т.е. числу молекул газа в единице объема. Для любого разреженного газа справедливо соотношение:

где k - некоторая универсальная для всех газов постоянная величина. Ее называют постоянной Больцмана, в честь австрийского физика Л. Больцмана, одного из создателей молекулярно-кинетической теории. Постоянная Больцмана - одна из фундаментальных физических констант. Ее численное значение в СИ равно:


k = 1,38·10 -23 Дж/К. (7.12)

Сравнивая соотношения (7.11) и (7.9), можно получить:

Средняя кинетическая энергия хаотического движения молекул газа прямо пропорциональна абсолютной температуре. Таким образом, температура есть мера средней кинетической энергии поступательного движения молекул .

Следует обратить внимание на то, что средняя кинетическая энергия поступательного движения молекулы не зависит от ее массы. Броуновская частица, взвешенная в жидкости или газе, обладает такой же средней кинетической энергией, как и отдельная молекула, масса которой на много порядков меньше массы броуновской частицы. Этот вывод распространяется и на случай, когда в сосуде находится смесь химически невзаимодействующих газов, молекулы которых имеют разные массы. В состоянии равновесия молекулы разных газов будут иметь одинаковые средние кинетические энергии теплового движения, определяемые только температурой смеси. Давление смеси газов на стенки сосуда будет складываться из парциальных давлений каждого газа:

В этом соотношении n 1 , n 2 , n 3 , … - концентрации молекул различных газов в смеси. Это соотношение выражает на языке молекулярно-кинетической теории экспериментально установленный в начале XIX столетия закон Дальтона : давление в смеси химически невзаимодействующих газов равно сумме их парциальных давлений.

Уравнение состояния идеального газа в форме pV = nRT или p = nkT может быть обосновано и методами кинетической теории газов. На основе кинетического подхода сравнительно просто выводится выражение для давления идеального газа в сосуде, которое получается как результат усреднения импульсов молекул, передаваемых стенке сосуда при многочисленных соударениях молекул со стенкой. Величина получаемого при этом давления определяется как

Где бv 2 с – среднее значение квадрата скорости молекул, m – масса молекулы.

Средняя кинетическая энергия молекул газа (в расчете на одну молекулу) определяется выражением

Кинетическая энергия поступательного движения атомов и молекул, усредненная по огромному числу беспорядочно движущихся частиц, является мерилом того, что называется температурой. Если температура T измеряется в градусах Кельвина (К), то связь ее с E k дается соотношением

Это соотношение позволяет, в частности, придать более отчетливый физический смысл постоянной Больцмана

    Внутренняя энергия идеального газа.

В теории идеального газа потенциальная энергия взаимодействия молекул считается равной нулю. Поэтому внутренняя энергия идеального газа определяется кинетической энергией движения всех его молекул. Средняя энергия движения одной молекулы равна

Так как в одном киломоле содержится молекул, то внутренняя энергия одного киломоля газа будет

Учитывая, что, получим

Для любой массы m газа, т.е. для любого числа киломолей внутренняя энергия

Из этого выражения следует, что внутренняя энергия является однозначной функцией состояния и, следовательно, при совершении системой любого процесса, в результате которого система возвращается в исходное состояние, полное изменение внутренней энергии равно нулю. Математически это записывается в виде тождества

    Распределение Максвелла

Распределение Ма́ксвелла -распределение вероятности , встречающееся вфизике ихимии . Оно лежит в основаниикинетической теории газов , которая объясняет многие фундаментальные свойства газов, включаядавление идиффузию . Распределение Максвелла также применимо для электронных процессов переноса и других явлений. Распределение Максвелла применимо к множеству свойств индивидуальных молекул в газе. О нём обычно думают как о распределении энергий молекул в газе, но оно может также применяться к распределению скоростей, импульсов, и модуля импульсов молекул. Также оно может быть выражено как дискретное распределение по множеству дискретных уровней энергии, или как непрерывное распределение по некоторому континууму энергии.

Распределение Максвелла может и должно быть получено при помощи статистической механики (см. происхождениестатсуммы ). Как распределение энергии, оно соответствует самому вероятному распределению энергии, в столкновительно-доминируемой системе, состоящей из большого количества невзаимодействующих частиц, в которой квантовые эффекты являются незначительными. Так как взаимодействие между молекулами в газе является обычно весьма небольшим, распределение Максвелла даёт довольно хорошее приближение ситуации, существующей в газе.

Во многих других случаях, однако, даже приблизительно не выполнено условие доминирования упругих соударений над всеми другими процессами. Это верно, например, в физикеионосферы и космическойплазмы , где процессы рекомбинации и столкновительного возбуждения (то есть излучательные процессы) имеют большое значение, в особенности для электронов. Предположение о применимости распределения Максвелла дало бы в этом случае не только количественно неверные результаты, но даже предотвратило бы правильное понимание физики процессов на качественном уровне. Также, в том случае где квантоваяде Бройлева длина волны частиц газа не является малой по сравнению с расстоянием между частицами, будут наблюдаться отклонения от распределения Максвелла из-за квантовых эффектов.

Распределение энергии Максвелла может быть выражено как дискретное распределение энергии:

,

где является числом молекул имеющих энергиюпри температуре системы,является общим числом молекул в системе и-постоянная Больцмана . (Отметьте, что иногда вышеупомянутое уравнение записывается с множителем, обозначающим степень вырождения энергетических уровней. В этом случае сумма будет по всем энергиям, а не всем состояниям системы). Поскольку скорость связана с энергией, уравнение (1) может использоваться для получения связи между температурой и скоростями молекул в газе. Знаменатель в уравнении (1) известен как каноническаястатистическая сумма .

    Распределение Больцмана.

Распределение Больцмана - распределение вероятностей различных энергетических состоянийидеальной термодинамической системы (идеальный газ атомов или молекул) в условияхтермодинамического равновесия ; открытоЛ. Больцманом в1868 -1871 .

Согласно распределению Больцмана среднее число частиц с полной энергиейравно

где - кратность состояния частицы с энергией- число возможных состояний частицы с энергией. Постояннаянаходится из условия, что суммапо всем возможным значениямравна заданному полному числу частицв системе (условие нормировки):

В случае, когда движение частиц подчиняется классической механике, энергию можно считать состоящей из

    Явление переноса. Диффузия

явлениями переноса теплопроводность (перенос энергии), диффузия (перенос массы) и внутреннее трение (перенос импульса). Ограничимся одномерными явлениями переноса. Систему отсчета будем выберать так, чтобы ось х была направлена в сторону в направления пер

Диффузия . При происходит самопроизвольное проникновение и перемешивание частиц двух соприкасающихся газов, жидкостей и даже твердых тел; диффузия есть обмен масс частиц этих тел, при этом явление возникает и продолжается, пока существует градиент плотности. Во времена становления молекулярно-кинетической теории по вопросу явления диффузии возникли противоречия. Поскольку молекулы перемещаются в пространстве с огромными скоростями, то диффузия должна происходить очень быстро. Если же открыть в комнате крышку сосуда с пахучим веществом, то запах распространяется довольно медленно. Но здесь нет противоречия. При атмосферном давлении молекулы обладают малой длиной свободного пробега и, при столкновениях с другими молекулами, приемущественно «стоят» на месте. Явление диффузии для химически однородного газа подчиняется закону Фика : (3) где j m - плотность потока массы - величина, определяемая массой вещества, диффундирующего в единицу времени через единичную площадку, перпендикулярную оси х, D - диффузия (коэффициент диффузии ), dρ/dx - градиент плотности, который равен скорости изменения плотности на единицу длины х в направлении нормали к этой площадке. Знак минус говорит о том, что перенос массы происходит в направлении убывания плотности (поэтому знаки j m и dρ/dx противоположны). Диффузия D численно равна плотности потока массы при градиенте плотности, равном единице. Согласно кинетической теории газов,(4)

    Явление переноса . Теплопроводность

В термодинамически неравновесных системах происходят особые необратимые процессы, называемые явлениями переноса , в результате которых осуществляется пространственный перенос массы, импульса, энергии. К явлениям переноса относятся теплопроводность (перенос энергии), диффузия (перенос массы) и внутреннее трение (перенос импульса). Ограничимся одномерными явлениями переноса. Систему отсчета будем выберать так, чтобы ось х была направлена в сторону в направления переноса. Теплопроводность . Если в первой области газа средняя кинетическая энергия молекул больше, чем во второй, то вследствие постоянных столкновений молекул с течением времени происходит процесс выравнивания средних кинетических энергий молекул, т. е., выравнивание температур. Перенос энергии в форме теплоты подчиняется закону Фурье : (1) где j E - плотность теплового потока - величина, которая определяется энергией, переносимой в форме теплоты в единицу времени через единичную площадку, перпендикулярную оси х, λ - теплопроводность , - градиент температуры, равный скорости изменения температуры на единицу длины х в направлении нормали к этой площадке. Знак минус говорит о том, что во время теплопроводности энергия перемещается в направлении убывания температуры (поэтому знаки j E и – противоположны). Теплопроводность λ равна плотности теплового потока при градиенте температуры, равном единице. Можно показать, что (2) где с V - удельная теплоемкость газа при постоянном объеме (количество теплоты, которое необходимо для нагревания 1 кг газа на 1 К при постоянном объеме), ρ - плотность газа, <ν > - средняя скорость теплового движения молекул, <l > - средняя длина свободного пробега.

    Явление переноса. Вязкость

В термодинамически неравновесных системах происходят особые необратимые процессы, называемые явлениями переноса , в результате которых осуществляется пространственный перенос массы, импульса, энергии. К явлениям переноса относятся теплопроводность (перенос энергии), диффузия (перенос массы) и внутреннее трение (перенос импульса). Ограничимся одномерными явлениями переноса. Систему отсчета будем выберать так, чтобы ось х была направлена в сторону в направления переноса.

Внутреннее трение (вязкость ). Суть механизма возникновения внутреннего трения между параллельными слоями газа (жидкости), которые движущутся с различными скоростями, есть в том, что из-за хаотического теплового движения осуществляется обмен молекулами между слоями, в результате чего импульс слоя, который движется быстрее, уменьшается, который движется медленнее - увеличивается, что приводит к торможению слоя, который движется быстрее, и ускорению слоя, который движется медленнее. Как известно, сила внутреннего трения между двумя слоями газа (жидкости) подчиняется закону Ньютона : (5) где η - динамическая вязкость (вязкость), dν /dx - градиент скорости, который показывает быстроту изменения скорости в направлении х, перпендикулярном направлению движения слоев, S - площадь, на которую действует сила F. Согласно второму закону Ньютона взаимодействие двух слоев можно рассматривать как процесс, при котором в единицу времени от одного слоя к другому передается импульс, который по модулю равен действующей силе. Тогда выражение (5) можно записать в виде (6) где j p - плотность потока импульса - величина, которая определяется определяемая полным импульсом, переносимым в единицу времени в положительном направлении оси х через единичную площадку, перпендикулярную оси х, dν /dx - градиент скорости. Знак минус говорит о том, что импульс переносится в направлении убывания скорости (поэтому знаки j p и dν /dx противоположны). Динамическая вязкость η численно равна плотности потока импульса при градиенте скорости, равном единице; она вычисляется по формуле (7) Из сопосавления формул (1), (3) и (6), которые описывают явления переноса, следует, что закономерности всех явлений переноса сходны между собой. Эти законы были известны еще задолго до того, как они были обоснованы и получены из молекулярно-кинетической теории, которая позволила установить, что внешнее сходство их математических выражений является следствием общностью лежащего в основе явлений теплопроводности, диффузии и внутреннего трения молекулярного механизма перемешивания молекул в процессе их хаотического движения и столкновений друг с другом. Рассмотренные законы Фурье, Фика и Ньютона не вскрывают молекулярно-кинетической сути коэффициентов λ, D и η. Выражения для коэффициентов переноса получаются из кинетической теории. Они записаны без вывода, поскольку строгое и формальное рассмотрение явлений переноса довольно громоздко, а качественное - не имеет смысла. Формулы (2), (4) и (7) дают связь коэффициентов переноса и характеристики теплового движения молекул. Из этих формул следуют простые зависимости между λ, D и η:и

    Реальный газы. Уравнение Ван-дер-Ваальса. Изотермы реального газа.

Реальный газ -газ , который не описывается уравнением состояния идеального газа Клапейрона - Менделеева .

Зависимости между его параметрами показывают, что молекулы в реальном газе взаимодействуют между собой и занимают определенный объём. Состояние реального газа часто на практике описывается обобщённым уравнением Менделеева - Клапейрона:

где p - давление; V - объем; T - температура; Z r = Z r (p,T) - коэффициент сжимаемости газа; m - масса; М - молярная масса ; R - газовая постоянная .

Уравнение состояния газа Ван-дер-Ваальса -уравнение , связывающее основные термодинамические величины в модели газа Ван-дер-Ваальса .

Хотя модель идеального газа хорошо описывает поведение реальных газов при низких давлениях и высоких температурах , в других условиях её соответствие с опытом гораздо хуже. В частности, это проявляется в том, что реальные газы могут быть переведены в жидкое и даже в твёрдое состояние , а идеальные - не могут.

Для более точного описания поведения реальных газов при низких температурах была создана модель газа Ван-дер-Ваальса, учитывающая силы межмолекулярного взаимодействия. В этой модели внутренняя энергия становится функцией не толькотемпературы , но и объёма .

Уравнение Ван-дер-Ваальса - это одно из широко известных приближённых уравнений состояния, имеющее компактную форму и учитывающее основные характеристики газа с межмолекулярным взаимодействием .

Поскольку весь процесс происходит при постоянной температуре T , кривую, что изображает зависимость давления р от объёма V , называют изотермой . При объёме V 1 начинается конденсация газа, а при объёме V 2 она заканчивается. Если V > V 1 то вещество будет в газообразном состоянии, а при V < V 2 - в жидком.

    Твёрдое тело. Закон Дюлонга и Пти. Тепловое расширение твердых тел. Плавление.

Твёрдое тело - это одно из четырёх агрегатных состояний вещества , отличающееся от других агрегатных состояний (жидкости , газов , плазмы ) стабильностью формы и характером теплового движения атомов , совершающих малые колебания около положений равновесия .

Различают кристаллические и аморфные твёрдые тела. Раздел физики , изучающий состав и внутреннюю структуру твёрдых тел, называется физикой твёрдого тела . То, как твёрдое тело меняет форму при воздействиях и движении, изучается отдельной дисциплиной - механикой твёрдого (деформируемого) тела . Движением абсолютно твёрдого тела занимается третья наука - кинематика твёрдого тела .

Технические приспособления, созданные человеком, используют различные свойства твёрдого тела. В прошлом твёрдое тело применялось как конструкционный материал и в основе употребления лежали непосредственно ощутимые механические свойства как то твёрдость , масса , пластичность , упругость , хрупкость . В современном мире применение твёрдого тела основывается на физических свойствах, которые зачастую обнаруживаются только при лабораторных исследованиях.

Закон Дюлонга - Пти (Закон постоянства теплоёмкости ) - эмпирический закон , согласно которому молярная теплоёмкость твёрдых тел при комнатной температуре близка к 3R :

где R - универсальная газовая постоянная .

Закон выводится в предположении, что кристаллическая решетка тела состоит из атомов, каждый из которых совершает гармонические колебания в трех направлениях, определяемыми структурой решетки, причем колебания по различным направлениям абсолютно независимы друг от друга. При этом получается, что каждый атом представляет три осциллятора с энергией E , определяемой следующей формулой:

Формула вытекает из теоремы о равнораспределении энергии по степеням свободы. Так как каждый осциллятор имеет одну степень свободы , то его средняя кинетическая энергия равна , а так как колебания происходят гармонически, то средняяпотенциальная энергия равна средней кинетической, а полная энергия - соответственно их сумме. Число осцилляторов в одном моле вещества составляет , их суммарная энергия численно равна теплоемкости тела - отсюда и вытекает закон Дюлонга-Пти.

Приведем таблицу экспериментальных значений теплоемкости ряда химических элементов для нормальных температур:

Тепловое расширение -изменение линейных размеров и формы тела при изменении его температуры . Количественно тепловое расширение жидкостей и газов при постоянном давлении характеризуется изобарным коэффициентом расширения (объёмным коэффициентом теплового расширения). Для характеристики теплового расширения твёрдых тел дополнительно вводят коэффициент линейного теплового расширения.

Раздел физики изучающий данное свойство называется дилатометрией .

Тепловое расширение тел учитывается при конструировании всех установок, приборов и машин, работающих в переменных температурных условиях.

Основной закон теплового расширения гласит, что тело с линейным размером в соответствующем измерении при увеличении его температуры нарасширяется на величину, равную:

где - так называемыйкоэффициент линейного теплового расширения . Аналогичные формулы имеются для расчета изменения площади и объема тела. В приведенном простейшем случае, когда коэффициент теплового расширения не зависит ни от температуры, ни от направления расширения, вещество будет равномерно расширяться по всем направлениям в строгом соответствии с вышеприведенной формулой.

Плавле́ние -это процесс перехода тела из кристаллического твёрдого состояния в жидкое, то есть переход вещества из одного агрегатного состояния в другое. Плавление происходит с поглощением удельной теплоты плавления и является фазовым переходом первого рода, которое сопровождается скачкообразным изменением теплоёмкости в конкретной для каждого вещества температурной точке превращения - температура плавления .

Способность плавиться относится к физическим свойствам вещества

При нормальном давлении, наибольшей температурой плавления среди металлов обладает вольфрам (3422 °C), среди простых веществ - углерод (по разным данным 3500 - 4500 °C ) а среди произвольных веществ - карбид тантала-гафния Ta 4 HfC 5 (4216 °C). Можно считать, что самой низкой температурой плавления обладает гелий : при нормальном давлении он остаётся жидким при сколь угодно низких температурах.

Многие вещества при нормальном давлении не имеют жидкой фазы. При нагревании они путем сублимации сразу переходят в газообразное состояние.

    Жидкости. Поверхностное плавление. Смачивание.

Жи́дкость - вещество, находящееся в жидком агрегатном состоянии , занимающем промежуточное положение между твёрдым и газообразным состояниями . Основным свойством жидкости, отличающим её от веществ, находящихся в других агрегатных состояниях, является способность неограниченно менять форму под действием касательных механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём.

Поверхностные явления ,физико-химические явления, которые обусловлены особыми (по сравнению с объемными) свойствами поверхностных слоев жидкостей и твердых тел. Наиболее общее и важное свойство этих слоев - избыточная свободная энергия F = sS , где s-поверхностное (межфазное) натяжение, для твердых тел - удельная свободная поверхностная энергия . S -площадь поверхности раздела фаз. Поверхностные явления протекают наиболее выраженно в гетерогенных системах с сильно развитой поверхностью раздела фаз, т. е. в дисперсных системах. Изучение закономерностей поверхностных явлений является составной частью коллоидной химии и чрезвычайно важно для всех ее практических приложений.

Самопроизвольные поверхностные явления происходят вследствие уменьшения поверхностной энергии системы. Они могут быть обусловлены уменьшением общей поверхности системы либо уменьшением поверхностного натяжения на границе раздела фаз. К поверхностным явлениям, связанным с уменьшением общей поверхности, относят: 1) капиллярные явления . в частности приобретение каплями (в туманах) и газовыми пузырьками (в жидкой среде) сферич. формы, при которой поверхность капли (пузырька) минимальна. 2) Коалесценция - слияние капель в эмульсиях (или газовых пузырьков в пенах )при их непосредств. контакте. 3) Спекание мелких твердых частиц в порошках при достаточно высоких температурах. 4) Собирательная рекристаллизация - укрупнение зерен поликристаллического материала при повышении температуры. 5) Изотермическая перегонка - увеличение объема крупных капель за счет уменьшения мелких. При этом вследствие повышенного давления паров жидкости с более высокой кривизной поверхности происходит испарение мелких капель и последующая их конденсация на более крупных каплях. Для жидкости, находящейся на твердой подложке, существенная роль в переносе вещества от мелких капель к крупным играет поверхностная диффузия . Изотермическая перегонка твердых частиц может происходить через жидкую фазу вследствие повышенной растворимости более мелких частиц.

При определенных условиях в системе могут происходить самопроизвольные поверхностные явления, сопровождающиеся увеличением общей поверхности раздела фаз. Так, самопроизвольное диспергирование и образование устойчивых лиофильных коллоидных систем (например, критических эмульсий) происходит в условиях, когда увеличение поверхностной энергии, вызываемое измельчением частиц, компенсируется их вовлечением в тепловое движение и соответствующим возрастанием энтропии (см. Микроэмульсии). При гомогенном образовании зародышей новой фазы при конденсации паров, кипении . кристаллизации из растворов и расплавов увеличение энергии системы вследствие образования новой поверхности компенсируется уменьшением хим. потенциала вещества при фазовом переходе . Критические размеры зародышей, при превышении которых выделение новой фазы идет самопроизвольно, зависят от поверхностного натяжения, а также от величины перегрева (переохлаждения, пересыщения). Связь между этими параметрами определяется уравнением Гиббса (см. Зарождение новой фазы).

Сма́чивание -физическое взаимодействие жидкости с поверхностью твёрдого тела или другой жидкости. Смачивание бывает двух видов:

    Иммерсионное (вся поверхность твёрдого тела контактирует с жидкостью)

    Контактное (состоит из трёх фаз - твердая, жидкая, газообразная)

Смачивание зависит от соотношения между силами сцепления молекул жидкости с молекулами (или атомами ) смачиваемого тела (адгезия ) и силами взаимного сцепления молекул жидкости (когезия ).

Если жидкость контактирует с твёрдым телом, то существуют две возможности:

    молекулы жидкости притягиваются друг к другу сильнее, чем к молекулам твёрдого тела. В результате силы притяжения между молекулами жидкости собирают её в капельку. Так ведёт себя ртуть на стекле , вода на парафине или «жирной» поверхности. В этом случае говорят, что жидкость не смачивает поверхность;

    молекулы жидкости притягиваются друг к другу слабее, чем к молекулам твёрдого тела. В результате жидкость стремится прижаться к поверхности, расплывается по ней. Так ведёт себя ртуть на цинковой пластине, вода на чистом стекле или дереве. В этом случае говорят, что жидкость смачивает поверхность.

Степень смачивания характеризуется углом смачивания. Угол смачивания (или краевой угол смачивания) - это угол, образованный касательными плоскостями к межфазным поверхностям, ограничивающим смачивающую жидкость, а вершина угла лежит на линии раздела трёх фаз. Измеряется методом лежащей капли . В случае порошков надёжных методов, дающих высокую степень воспроизводимости , пока (по состоянию на 2008 год) не разработано. Предложен весовой метод определения степени смачивания, но он пока не стандартизован.

Измерение степени смачивания весьма важно во многих отраслях промышленности (лакокрасочная, фармацевтическая, косметическая и т. д.). К примеру, на лобовые стёкла автомобилей наносят особые покрытия, которые должны быть устойчивы против разных видов загрязнений. Состав и физические свойства покрытия стёкол и контактных линз можно сделать оптимальным по результатам измерения контактного угла .

К примеру, популярный метод увеличения добычи нефти при помощи закачки воды в пласт исходит из того, что вода заполняет поры и выдавливает нефть . В случае мелких пор и чистой воды это далеко не так, поэтому приходится добавлять специальные ПАВ . Оценку смачиваемости горных пород при добавлении различных по составу растворов можно измерить различными приборами.

УРОК

Тема . Температура – мера средней кинетической энергии движения молекул.

Цель: формировать знания о температуре как одном из термодинамических параметров и мере средней кинетической энергии движения молекул, температурных шкалах Кельвина и Цельсия и связи между ними, об из­мерении температуры с помощью термометров.

Тип урока: урок усвоения новых знаний.

Оборудование: термометр жидкостный демонстрационный.

Ход урока

              1. Организационный этап

                Актуализация опорных знаний

                1. Имеют ли газы собственный объем?

                  Имеют ли газы форму?

                  Образуют ли газы струи? текут ли?

                  Можно ли газы сжать?

                  Как расположены в газах молекулы? Как они двигаются?

                  Что можно сказать о взаимодействии молекул в газах?

Вопросы классу

1. Почему газы при высокой температуре можно считать идеальными?

( Чем выше температура газа, тем больше кинетическая энергия теплового движения молекул, а значит, газ более близок к идеальному .)

2. Почему при высоком давлении свойства реальных газов отличаются от свойств идеального? (С ростом давления уменьшается расстояние между молекулами газа и их взаимодействием уже нельзя пренебречь .)

              1. Сообщение темы, цели и задач урока

Сообщаем тему урока.

IV . Мотивация учебной деятельности

Почему важно изучать газы, уметь описывать процессы, которые в них происходят? Обоснуйте ответ, используя усвоенные знания по физике, собственный жизненный опыт.

V. Изучение нового материала

3. Температура как термодинамический параметр идеального газа. Состояние газа описывают с помощью определенных величин, которые называют параметрами состояния. Различают:

    1. микроскопические, т.е. характеристики собственно молекул, - размеры, массу, скорость, импульс, энергию;

      макроскопические, т.е. параметры газа как физического тела - температуру, давление, объем.

Молекулярно-кинетическая теория позволяет нам понять, что представляет собой физическая сущность такого сложного понятия, как температура.

Со словом «температура» вы знакомы с раннего детства. Теперь познакомимся с температурой как параметром.

Нам известно, что разные тела могут иметь разную температуру. Следовательно, температура характеризует внутреннее состояние тела. В результате взаимодействия двух тел с разной температурой, как свидетельствует опыт, их температуры спустя, некоторое время сравняются. Многочисленные опыты свидетельствуют о том, что температуры тел, находящихся в тепловом контакте, уравниваются, т.е. между ними устанавливается тепловое равновесие.

Тепловым или термодинамическим равновесием называют такое состояние, при котором все макроскопические параметры в системе сколь угодно долго остаются неизменными . Это означает, что в системе не меняются объем и давление, не изменяются агрегатные состояния вещества, концентрации веществ. Но микроскопические процессы внутри тела не прекращаются и при тепловом равновесии: меняются положения молекул, их скорости при столкновениях. В системе тел, находящейся в состоянии термодинамического равновесия, объемы и давления могут быть различными, а температуры обязательно одинаковы. Таким образом, температура характеризует состояние термодинамического равновесия изолированной системы тел .

Чем быстрее двигаются молекулы в теле, тем сильнее ощущение тепла при касании. Большая скорость движения молекул соответствует большей кинетической энергии. Следовательно, по величине температуры можно составить представление о кинетической энергии молекул.

Температура - это мера кинетической энергии теплового движения молекул .

Температура - скалярная величина; в СИ измеряется в Кель винах (К).

2 . Температурные шкалы. Измерение температуры

Температура измеряется с помощью термометров, действие которых основано на явлении термодинамического равновесия, т.е. термометр - это прибор для измерения температуры путем контакта с исследуемым телом. При изготовлении термометров разного типа учитывается зависимость от температуры разных физических явлений: теплового расширения, электрических и магнитных явлений и т.п.

Их действие основано на том факте, что при изменении температуры, изменяются и другие физические параметры тела, например, такие, как давление и объем.

В 1787 году Ж. Шарль из эксперимента установил прямую пропорциональную зависимость давления газа от температуры. Из опытов следовало, что при одинаковом нагревании давление любых газов изменяется одинаково. Использование этого экспериментального факта легло в основу создания газового термометра.

Различают такие виды термометров : жидкостные, термопары, газовые, термометры сопротивления.

Основные виды шкал:

В физике в большинстве случаев пользуются введенной английским ученым У. Кельвином абсолютной шкалой температур (1848 г.), которая имеет две основные точки.

Первая основная точка - 0 К, или абсолютный нуль.

Физический смысл абсолютного нуля: это температура, при которой прекращается тепловое движение молекул .

При абсолютном нуле молекулы поступательно не двигаются. Тепловое движение молекул непрерывно и бесконечно. Следовательно, абсолютный нуль температур при наличии молекул вещества недосягаем. Абсолютный нуль температур - это самая низкая температурная граница, верхней не существует.

Вторая основная точка - это точка, в которой вода существует во всех трех состояниях (твердом, жидком и газообразном), она названа тройной точкой.

В быту для измерения температуры используют другую температурную шкалу - шкалу Цельсия, названную в честь шведского астронома А.Цельсия и введенную им в 1742 г.

На шкале Цельсия есть две основные точки: 0°С (точка, в которой тает лед) и 100°С (точка, в которой кипит вода). Температура, которую определяют по шкале Цельсия, обозначается t . Шкала Цельсия имеет как положительные, так и отрицательные значения.

Пользуясь рисунком, проследим связь между температурами по шкалам Кельвина и Цельсия.

Цена деления на шкале Кельвина такая же, как и на шкале Цельсия:

ΔT = T 2 - T 1 =( t 2 +273) - ( t 1 +273) = t 2 - t 1 = Δt .

Итак, ΔT = Δt , т.е. изменение температуры по шкале Кельвина равно изменению температуры по шкале Цельсия.

Т K = t ° C + 273

0 К = -273°С

0°С =273 К

Задание классу .

Опишите жидкостный термометр как физический прибор по плану характеристики физического прибора.

Характеристика жидкостного термометра как физического прибора

    Измерение температуры.

    Запаянный стеклянный капилляр, в нижней части имеющий резервуар для жидкости, заполненный ртутью или подкрашенным спиртом. Капилляр присоединен к шкале и обычно помещен в стеклянный футляр.

    При увеличении температуры жидкость внутри капилляра расширяется и поднимается, при уменьшении температуры - опускается.

    Используется для изм . температуры воздуха, воды, тела человека и т.п.

    Диапазон температур, которые можно измерять с помощью жидкостных термометров, широк (ртутным от -35 до 75 °С, спиртовым от -80 до 70 °С). Недостатком является то, что при нагревании разные жидкости расширяются по-разному, при одинаковой температуре показания могут несколько отличаться.

3. Температура – мера средней кинетической энергии движения молекул

Опытным путем было установлено, что при постоянном объеме и температуре давление газа прямо пропорционально его концентрации. Объединяя экспериментально полученные зависимости давления от температуры и концентрации, получаем уравнение:

р = nkT , где - k=1,38×10 -23 Дж/К , коэффициент пропорциональности - постоянная Больцмана. Постоянная Больцмана связывает температуру со средней кинетической энергией движения молекул в веществе. Это одна из наиболее важных постоянных в МКТ. Температура прямо пропорциональна средней кинетической энергии теплового движения частиц вещества. Следовательно, температуру можно назвать мерой средней кинетической энергии частиц, характеризующей интенсивность теплового движения молекул. Этот вывод хорошо согласуется с экспериментальными данными, показывающими увеличение скорости частиц вещества с ростом температуры.

Рассуждения, которые мы проводили для выяснения физической сущности температуры, относятся к идеальному газу. Однако выводы, полученные нами, справедливы не только для идеального, но и для реальных газов. Справедливы они и для жидкостей и твердых тел. В любом состоянии температура вещества характеризует интенсивность теплового движения его частиц.

VII. Подведение итогов урока

Подводим итоги урока, оцениваем деятельность учащихся.

Домашнее задание

    1. Выучить теоретический материал по конспекту. § _____ стр. _____

Учитель высшей категории Л.А.Донец

Страница 5

Представляет собой ту энергию, которая определяется скоростью движения различных точек, принадлежащих этой системе. При этом следует различать энергию, которая характеризует поступательное движение и движение вращательное. При этом, средняя кинетическая энергия - это средняя разность между совокупной энергией всей системы и ее энергией покоя, то есть, в сущности, ее величина является средней величиной потенциальной энергии.

Ее физическая величина определяется по формуле 3 / 2 кТ, в которой обозначены: Т - температура, k - константа Больцмана. Эта величина может служить своеобразным критерием для сравнения (эталоном) для энергий, заключенных в различных типах теплового движения. К примеру, средняя кинетическая энергия для молекул газа при исследовании поступательного движения, равна 17 (- 10) нДж при температуре газа 500 С. Как правило, наибольшей энергией при поступательном движении обладают электроны, а вот энергия нейтральных атомов и ионов и значительно меньше.

Данная величина, если мы рассматриваем любой раствор, газ или жидкость, находящуюся при данной температуре, имеет постоянное значение. Такое утверждение справедливо и для коллоидных растворов.

Несколько иначе обстоит дело с твердыми веществами. В этих веществах средняя кинетическая энергия любой частицы слишком мала для того, чтобы преодолеть силы молекулярного притяжения, а потому она может только совершать движение вокруг некой точки, которая условно фиксирует определенное равновесное положение частицы на протяжении длительного отрезка времени. Это свойство и позволяет твердому веществу быть достаточно устойчивым по форме и объему.

Если мы рассматриваем условия: поступательное движение и идеальный газ, то здесь средняя кинетическая энергия не является величиной, зависимой от молекулярной массы, а потому определяется как значение, прямо пропорциональное значению абсолютной температуры.

Все эти суждения мы привели с той целью, чтобы показать, что они справедливы для всех типов агрегатных состояний вещества - в любом из них температура выступает в качестве основной характеристики, отражающей динамику и интенсивность теплового движения элементов. А в этом состоит сущность молекулярно-кинетической теории и содержание понятия теплового равновесия.

Как известно, если два физических тела приходят во взаимодействие друг с другом, то между ними возникает процесс теплообмена. Если же тело представляет собой замкнутую систему, то есть не взаимодействует ни с какими телами, то его теплообменный процесс будет длиться столько времени, сколько потребуется для выравнивания температур этого тела и окружающей среды. Такое состояние называют термодинамическим равновесием. Этот вывод многократно был подтвержден результатами экспериментов. Чтобы определить среднюю кинетическую энергию, следует обратиться к характеристикам температуры данного тела и его теплообменных свойств.

Важно также учитывать, что микропроцессы внутри тел не заканчиваются и тогда, когда тело вступает в термодинамическое равновесие. В этом состоянии внутри тел происходит перемещение молекул, изменение их скоростей, удары и столкновения. Поэтому выполняется только одно из нескольких наших утверждений - объем тела, давление (если речь идет о газе), могут различаться, но вот температура все равно будет оставаться величиной постоянной. Этим еще раз подтверждается утверждение, что средняя кинетическая энергия теплового движения в изолированных системах определяется исключительно показателем температуры.

Эту закономерность установил в ходе опытов Ж. Шарль в 1787 году. Проводя опыты, он заметил, что при нагреве тел (газов) на одинаковую величину, давление их меняется в соответствии с прямо пропорциональным законом. Это наблюдение дало возможность создать много полезных приборов и вещей, в частности - газовый термометр.

«Физика - 10 класс»

Абсолютная температура.


Вместо температуры Θ, выражаемой в энергетических единицах, введём температуру, выражаемую в привычных для нас градусах.

Θ = kТ, (9.12)

где k - коэффициент пропорциональности.

>Определяемая равенством (9.12) температура называется абсолютной .

Такое название, как мы сейчас увидим, имеет достаточные основания. Учитывая определение (9.12), получим

По этой формуле вводится температурная шкала (в градусах), не зависящая от вещества, используемого для измерения температуры.

Температура, определяемая формулой (9.13), очевидно, не может быть отрицательной, так как все величины, стоящие в левой части этой формулы, заведомо положительны. Следовательно, наименьшим возможным значением температуры Т является значение Т = 0, если давление р или объём V равны нулю.

Предельную температуру, при которой давление идеального газа обращается в нуль при фиксированном объёме или при которой объём идеального газа стремится к нулю при неизменном давлении, называют абсолютным нулём температуры .

Это самая низкая температура в природе, та «наибольшая или последняя степень холода», существование которой предсказывал Ломоносов.

Английский учёный У. Томсон (лорд Кельвин) (1824-1907) ввёл абсолютную шкалу температур. Нулевая температура по абсолютной шкале (её называют также шкалой Кельвина ) соответствует абсолютному нулю, а каждая единица температуры по этой шкале равна градусу по шкале Цельсия.

Единица абсолютной температуры в СИ называется кельвином (обозначается буквой К).


Постоянная Больцмана.

Определим коэффициент k в формуле (9.13) так, чтобы изменение температуры на один кельвин (1 К) было равно изменению температуры на один градус по шкале Цельсия (1 °С).

Мы знаем значения величины Θ при 0 °С и 100 °С (см. формулы (9.9) и (9.11)). Обозначим абсолютную температуру при 0 °С через Т 1 , а при 100 °С через Т 2 . Тогда согласно формуле (9.12)

Θ 100 - Θ 0 = k(T 2 -T 1),

Θ 100 - Θ 0 = k 100 K = (5,14 - 3,76) 10 -21 Дж.

Коэффициент

k = 1,38 10 -23 Дж/К (9.14)

называется постоянной Больцмана в честь Л. Больцмана, одного из основателей молекулярно-кинетической теории газов.

Постоянная Больцмана связывает температуру Θ в энергетических единицах с температурой Т в кельвинах.

Это одна из наиболее важных постоянных в молекулярно-кинетической теории.

Зная постоянную Больцмана, можно найти значение абсолютного нуля по шкале Цельсия. Для этого найдём сначала значение абсолютной температуры, соответствующее 0 °С. Так как при 0 °С kT 1 = 3,76 10 -21 Дж, то

Один кельвин и один градус шкалы Цельсия совпадают. Поэтому любое значение абсолютной температуры Т будет на 273 градуса выше соответствующей температуры t по Цельсию:

Т (К) = (f + 273) (°С). (9.15)

Изменение абсолютной температуры ΔТ равно изменению температуры по шкале Цельсия Δt: ΔТ(К) = Δt (°С).

На рисунке 9.5 для сравнения изображены абсолютная шкала и шкала Цельсия. Абсолютному нулю соответствует температура t = -273 °С.

В США используется шкала Фаренгейта. Точка замерзания воды по этой шкале 32 °F, а точка кипения 212 °Е Пересчёт температуры из шкалы Фаренгейта в шкалу Цельсия производится по формуле t(°C) = 5/9 (t(°F) - 32).

Отметим важнейший факт: абсолютный нуль температуры недостижим!


Температура - мера средней кинетической энергии молекул.


Из основного уравнения молекулярно-кинетической теории (9.8) и определения температуры (9.13) вытекает важнейшее следствие:
абсолютная температура есть мера средней кинетической энергии движения молекул .

Докажем это.

Из уравнений (9.7) и (9.13) следует, что Отсюда вытекает связь между средней кинетической энергией поступательного движения молекулы и температурой:

Средняя кинетическая энергия хаотичного поступательного движения молекул газа пропорциональна абсолютной температуре.

Чем выше температура, тем быстрее движутся молекулы. Таким образом, выдвинутая ранее догадка о связи температуры со средней скоростью молекул получила надёжное обоснование. Соотношение (9.16) между температурой и средней кинетической энергией поступательного движения молекул установлено для идеальных газов.

Однако оно оказывается справедливым для любых веществ, у которых движение атомов или молекул подчиняется законам механики Ньютона. Оно верно для жидкостей а также и для твёрдых тел, где атомы могут лишь колебаться возле положений равновесия в узлах кристаллической решётки.

При приближении температуры к абсолютному нулю энергия теплового движения молекул приближается к нулю, т. е. прекращается поступательное тепловое движение молекул.

Зависимость давления газа от концентрации его молекул и температуры. Учитывая, что из формулы (9.13) получим выражение, показывающее зависимость давления газа от концентрации молекул и температуры:

Из формулы (9.17) вытекает, что при одинаковых давлениях и температурах концентрация молекул у всех газов одна и та же.

Отсюда следует закон Авогадро, известный вам из курса химии.

Закон Авогадро:

В равных объёмах газов при одинаковых температурах и давлениях содержится одинаковое число молекул.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ