Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Лекция 1

Микроклимат помещений

Около 80% своей жизни человек проводит в помещении: жилых, общественных, производственных зданиях, транспорте. Здоровье и работоспособность человека в значительной степени зависят от того, насколько помещение в санитарно-гигиеническом отношении удовлетворяет его физиологическим требованиям.

Под микроклиматом помещения понимается совокупность теплового, воздушного и влажностного режимов в их взаимосвязи. Основное требование к микроклимату – поддержание благоприятных условий для людей, находящихся в помещении. В результате протекающих в организме человека процессов обмена веществ освобождается энергия в виде теплоты. Эта теплота (с целью поддержания постоянной температуры тела человека) должна быть передана окружающей среде. При обычных условиях более 90% вырабатываемой теплоты отдаётся окружающей среде (50% - излучением, 25% - конвекцией, 25% - испарением) и менее 10% теплоты теряется в результате обмена веществ.

Интенсивность теплоотдачи человека зависит от микроклимата помещения, характеризующегося:

Температурой внутреннего воздуха t в ;

Радиационной температурой помещения (осреднённой температурой его ограждающих поверхностей) t R ;

Скоростью движения (подвижностью) воздуха v ;

Относительной влажностью воздуха j в .

Сочетания этих параметров микроклимата, при которых сохраняется тепловое равновесие в организме человека и отсутствует напряжение в его системе терморегуляции называют комфортными или оптимальными .

Наиболее важно поддерживать в помещении в первую очередь благоприятные температурные условия, так как подвижность и относительная влажность имеют, как правило, несущественные колебания.

Кроме оптимальных различают допустимые сочетания параметров микроклимата, при которых человек может ощущать небольшой дискомфорт.

Часть помещения, в которой человек находится основное рабочее время, называют обслуживаемой или рабочей зоной .

Тепловые условия в помещении завися главным образом от т.е. от его температурной обстановки, которую принято характеризовать условиями комфортности .

Первое условие комфортности – определяет такую область сочетаний t в и t R , при которых человек, находясь в центре рабочей зоны, не испытывает ни перегрева, ни переохлаждения. Для спокойного состояния человека t в =21…23, при лёгкой работе – 19..21, при тяжёлой – 14…16°С.

Для холодного периода года первое условие характеризуется формулой:

t R =1,57t п -0,57t в ±1,5 , (1.1)

где: t п =(t в +t R)/ 2.

Второе условие комфортности – определяет допустимые температуры нагретых и охлаждённых поверхностей при нахождении человека в непосредственной близости от них.

Во избежание недопустимого радиационного перегрева или переохлаждения головы человека поверхности потолка и стен могут быть нагреты до допустимой температуры:

или охлаждены до температуры:

где: j - коэффициент облучённости от поверхности элементарной площадки на голове человека в сторону нагретой или охлаждённой поверхности.

Температура поверхности холодного пола зимой может быть лишь на 2-2,5°С ниже температуры воздуха помещения вследствие большой чувствительности ног человека к переохлаждению, но и не выше 22-34°С в зависимости от назначения помещений.

Основные нормативные требования к микроклимату помещений содержатся в нормативных документах: СНиП 2.04.05-91 (с изменениями и дополнениями), ГОСТ 12.1.005-88.

При определении расчетных метеорологических условий в помещении учитывается способность человеческого организма к акклиматизации в разное время года, интенсивности выполняемой работы и характер тепловыделений в помещении. Расчётные параметры воздуха нормируются в зависимости от периода года. Различают три периода года:

Холодный (среднесуточная температура наружного воздуха t н <+8°С);

Переходный (-"– t н =8°С);

Тёплый (-"– t н >8°С);

Оптимальные и допустимые метеорологические условия (температура внутреннего воздуха t в ) в обслуживаемой зоне жилых, общественных и административно-бытовых помещений приведены в таблице 1.1.

Таблица 3.1

Максимально допустимая температура воздуха в рабочей зоне - 28°С (если расчётная температура наружного воздуха больше 25°С – допускается до 33°С).

Оптимальные значения относительной влажности воздуха – 40-60%.

Оптимальные скорости воздуха в помещении для холодного периода – 0,2-0,3 м/с, для тёплого периода – 0,2-0,5 м/с.

Системы инженерного оборудования зданий

Требуемый микроклимат в помещениях создаётся следующими системами инженерного оборудования зданий: отопления, вентиляции и кондиционирования воздуха.

Системы отопления служат для создания и поддержания в помещениях в холодный период года необходимых температур воздуха, регламентируемых соответствующими нормами. Т.е. они обеспечивают необходимый тепловой режим помещений.

В тесной связи с тепловым режимом помещений находится воздушный режим, под которым понимают процесс обмена воздухом между помещениями и наружным воздухом.

Системы вентиляции предназначены для удаления из помещений загрязнённого и подачу в них чистого воздуха. При этом расчётная температура внутреннего воздуха не должна меняться. Системы вентиляции состоят из устройств для нагревания, увлажнения и осушения приточного воздуха.

Системы кондиционирования воздуха являются более совершенными средствами создания и обеспечения в помещении улучшенного микроклимата, т.е. заданных параметров воздуха: температуры, влажности и чистоты при допустимой скорости движения воздуха в помещении независимо от наружных метеорологических условий и переменных по времени вредных выделений в помещениях. Системы кондиционирования воздуха состоят из устройств термовлажностной обработки воздуха, очистки его от пыли, биологических загрязнений и запахов, перемещения и распределения воздуха в помещении, автоматического управления оборудованием и аппаратурой.

Теплозащитные свойства ограждений

Теплозащитные свойства ограждений принято характеризовать величиной сопротивления теплопередаче R 0 , которая численно равна падению температуры в градусах при прохождении теплового потока, равного 1 Вт, через 1 м 2 площади ограждения.

Уравнение применительно к наружным ограждениям зданий можно записать так:

R 0 =R в +R к +R н , (1.4)

где: R в =1/a в – сопротивление теплоотдаче внутренней поверхности, м 2 К/Вт;

R н =1/a н – сопротивление теплоотдаче наружной поверхности, м 2 К/Вт;

R к – термическое сопротивление ограждающей конструкции с последовательно расположенными однородными слоями, м 2 К/Вт;

a в – коэффициент теплоотдачи внутренней поверхности ограждения, Вт/(м 2 К);

a н – коэффициент теплоотдачи наружной поверхности ограждения, Вт/(м 2 К).

Величина R к определяется как сумма термических сопротивлений отдельных слоёв:

R к =R 1 +R 2 +…+R п +R в.п. , (1.5)

где: R 1 , R 2 ,… R п

R в.п. – термическое сопротивление замкнутой воздушной прослойки, м 2 К/Вт.

Термическое сопротивление каждого слоя однородной ограждающей конструкции R i определяют по формуле:

R i = d i /l i , (1.6)

где: d i – толщина отдельного слоя, м;

l i – расчётный коэффициент теплопроводности материала слоя, Вт/(м 2 К), принимаемый по СНиП II-3-79**.

Для определения термического сопротивления ограждений, в которых материал неоднороден как в параллельном, так и в перпендикулярном тепловому потоку направлениях (разного рода пустотелые блоки и т.п.) используются специальные методики расчёта.

Сопротивление теплопередаче наружных ограждений отапливаемых зданий должно определяться в соответствии с требованиями «Изменений №1 к СНиП II-3-79**» и быть не менее нормативного сопротивления теплопередаче R норм (или, в оговоренных случаях, не менее требуемого сопротивления теплопередаче R 0 тр , определяемого по формуле 1.8).

R 0 ³ R норм , или R 0 ³ R 0 тр , (1.7)

(1.8)

Для наружных дверей и ворот (кроме балконных) R 0 дверь ³ 0,6R 0 стены .

Однако выполнение условий (1.7) недостаточно, необходимо также учитывать технико-экономические показатели. Стоимость здания или сооружения складывается из капитальных затрат К (затраты на строительство) и эксплуатационных расходов ЭТ (в том числе и на отопление), причём эти показатели связаны с сопротивлением теплопередаче ограждений. При этом величина экономически целесообразного сопротивления теплопередаче ограждения R 0 эк соответствует минимуму приведенных затрат, равных сумме капитальных затрат К и эксплуатационных расходов ЭТ :

П=К+ЭТ . (1.9)

Если R 0 эк ³ R 0 тр , то расчётное сопротивление должно определяться по условию:

R 0 » R 0 эк . (1.10)

Определение R 0 эк из нескольких типов конструкций выполняется в соответствии с п. 2.15 (СНиП II-3-79**). Экономически целесообразной будет та конструкция наружного ограждения, для которой величина приведенных затрат П будет наименьшей.

Тепловая инерция D ограждающей конструкции определяется по формуле:

D=R 1 s 1 +R 2 s 2 +…+R n s n , (1.11)

где: R 1 , R 2 ,… R п , – термические сопротивления отдельных слоёв ограждения, м 2 К/Вт;

s 1 , s 2 ,… s п , – коэффициенты теплоусвоения материала слоёв ограждения, Вт/(м 2 К), значения s приведены в приложении 3* (СНиП II-3-79**).

Коэффициент теплоусвоения материала s показывает способность поверхности стенки площадью 1 м 2 усваивать тепловой поток мощность 1 Вт при температурном перепаде 1К. Он зависит от продолжительности отопления и физических свойств материала - теплопроводности, теплоёмкости, плотности.

Воздухопроницаемость – свойство ограждения или материала пропускать воздух при наличии разности давлений воздуха с разных сторон стенки (фильтрация). Если фильтрация происходит в направлении от наружного воздуха в помещение, то она называется инфильтрацией , при обратном направлении – эксфильтрацией .

Разность давлений воздуха на наружной и внутренней поверхностях ограждений возникает вследствие разности плотностей наружного и внутреннего воздуха (гравитационное давление) и под влиянием ветра (ветровое давление).

Гравитационное давление : перепад давлений в некоторой плоскости, отстоящей от нейтральной на расстояние h , определяется по формуле:

Dp=h(r н -r в) , (1.12)

где: r н , r в – плотности наружного и внутреннего воздуха соответственно, кг/м 3 .

Ветровое давление : под действием ветра на наветренных поверхностях здания возникает избыточное давление, а на заветренных поверхностях – разряжение.

Величина избыточного статического давления Dp ст (ветрового давления) равна:

, (1.13)

где: k 1 , k 2 – аэродинамические коэффициенты соответственно с наветренной и заветренной сторон здания;

v н – скорость набегающего на здание потока воздуха.

Воздухопроницаемость ограждающей конструкции оценивается по величине сопротивления воздухопроницанию R и , которое для сплошных слоёв материалов определяется так:

R и = d/i , (1.14)

где: d – толщина слоя, м;

i – коэффициент воздухопроницаемости материала, кг/(м 2 ×ч×Па), характеризующий количество воздуха в кг, которое проходит через 1 м 2 ограждения за 1 ч при разности давлений 1 Па.

Сопротивление воздухопроницанию R и должно быть не менее требуемого по СНиП II-3-79**, п. 5.1, R и тр , (м 2 ×ч×Па)/кг:

R и ³R и тр =Dр/G н , (1.15)

где: G н – нормативная воздухопроницаемость ограждающей конструкции, кг/(м 2 ч).

Сопротивление воздухопроницанию многослойной ограждающей конструкции R и , (м 2 ×ч×Па)/кг, определяют по формуле:

R и =R и1 +R и2 +…+R ип , (1.16)

где: R и1 , R и2 ,… R ип , – сопротивления воздухопроницанию отдельных слоёв ограждающей конструкции, (м 2 ×ч×Па)/кг.

Влажность . Повышение влажности строительных материалов увеличивает их теплопроводность, что существенно снижает теплозащитные качества ограждений. Влажный строительный материал неприемлем и с гигиенической точки зрения (появляются плесень, грибки, повышается влажность воздуха в помещении). Кроме того, повышенная влажность материала ограждения оказывает соответствующее влияние и на её долговечность.

Пути попадания влаги:

- строительная влага – вносится при возведении зданий или при изготовлении ж/б конструкций;

- грунтовая влага – проникает в ограждение вследствие капиллярного всасывания;

- атмосферная влага – попадает при косом дожде или неисправной кровле;

- эксплуатационная влага – в процессе эксплуатации зданий;

- гигроскопическая влага – вследствие гигроскопичности материала ограждения;

- конденсационная влага – влага из воздуха может конденсироваться как на внутренней поверхности ограждения, так и в его толще.

Разность величин упругости водяного пара с одной и с другой стороны ограждения вызывает диффузионный поток водяного пара через ограждение от внутренней поверхности к наружной. Количество водяного пара, диффундирующего в стационарных условиях через плоскую однородную стенку, можно определить из выражения:

G=(e в -e н)(m/d) , (1.17)

где: G – количество диффундирующего пара, кг;

e в и e н – упругости водяного пара у внутренней и наружной поверхностей, Па;

m - коэффициент паропроницаемости материала стенки, кг/(м×ч×Па);

d – толщина стенки, м.

Коэффициент паропроницаемости материала зависит от физических свойств данного материала и представляет собой количество водяного пара, которое диффундирует в течение 1 ч через 1 м 2 плоской стенки толщиной 1 м при разности упругостей водяного пара с одной и другой стороны, равной 1 Па.

Сопротивление паропроницанию (величина, обратная коэффициенту паропроницаемости) для однородного слоя материала определяется по формуле:

R п =d/m . (1.18)

Для предупреждения конденсации влаги на внутренней поверхности наружного ограждения необходимо, чтобы t в >t р . Температура точки росы t р воздуха помещения определяется по формуле:

t р =20,1-(5,75- 0,00206e в) 2 . (1.19)

Если условие t в >t р не соблюдается, то необходимо увеличить сопротивление теплопередаче ограждения R 0 . Кроме того, целесообразны вентилирование помещений, обдувка или обогрев внутренних поверхностей ограждения.


Похожая информация.


Обеспечение комфортного микроклимата производственных помещений

Лекция 5

Одним из необходимых условий нормальной жизнедеятельности человека является обеспечение нормальных метеорологических условий в помещениях, оказывающих существенное влияние на тепловое самочувствие человека. Метеорологические условия, или микроклимат, зависят от теплофизических особенностей технологического процесса, климата͵ сезона года, условий отопления и вентиляции.

Жизнедеятельность человека сопровождается непрерывным выделœением теплоты в окружающую среду. Ее количество зависит от степени физического напряжения в определœенных климатических условиях и составляет от 85 Дж/с (в состоянии покоя) до 500 Дж/с (при тяжелой работе). Для того чтобы физиологические процессы в организме протекали нормально, выделяемая организмом теплота должна полностью отводиться в окружающую среду. Нарушение теплового баланса может привести к перегреву либо к переохлаждению организма и, как следствие, к потери трудоспособности, быстрой утомляемости, потери сознания и тепловой смерти.

Одним из важных интегральных показателœей теплового состояния организма является средняя температура тела (внутренних органов) порядка 36,5 °С. Она зависит от степени нарушения теплового баланса и уровня энергозатрат при выполнении физической работы. При выполнении работы средней тяжести и тяжелой при высокой температуре воздуха температура тела может повышаться от нескольких десятых градуса до 1...2 °С. Наивысшая температура внутренних органов, которую выдерживает человек, составляет + 41,2-43 °С, минимальная +25 °С. Температурный режим кожи играет основную роль в теплоотдаче. Ее температура меняется в довольно значительных пределах и при нормальных условиях средняя температура кожи под одеждой составляет 30...34 °С. При неблагоприятных метеорологических условиях на отдельных участках тела она может понижаться до 20 °С, а иногда и ниже.

Нормальное тепловое самочувствие имеет место, когда тепловыделœение Qтч человека полностью воспринимается окружающей средой Qтo, ᴛ.ᴇ. когда имеет место тепловой баланс Qтч = Qтo . В этом случае температура внутренних органов остается постоянной. В случае если теплопродукция организма не может быть полностью передана окружающей среде (Qтч > Qтo), происходит рост температуры внутренних органов и такое тепловое самочувствие характеризуется понятием жарко. Теплоизоляция человека, находящегося в состоянии покоя (отдых сидя или лежа), от окружающей среды приведет к повышению температуры внутренних органов уже через 1 ч на 1,2 °С. Теплоизоляция человека, производящего работу средней тяжести, вызовет повышение температуры уже на 5 °С и вплотную приблизится к максимально допустимой. В случае, когда окружающая среда воспринимает больше теплоты, чем ее воспроизводит человек (Qтч < Qтo), то происходит охлаждение организма. Такое тепловое самочувствие характеризуется понятием холодно.

Теплообмен между человеком и окружающей средой осуществляется конвекцией Qk в результате омывания тела воздухом, теплопроводностью Q т, излучением на окружающие поверхности Qл и в процессе тепломассообмена (Q тм =Q п +Q д) при испарении влаги, выводимой на поверхность кожи потовыми желœезами Q п и при дыхании Qд:

Q тч = Q к + Q т + Q л + Q тм.

Тепловое самочувствие человека, или тепловой баланс в системе человек – среда обитания зависит от температуры среды, подвижности и относительной влажности воздуха, атмосферного давления, температуры окружающих предметов и интенсивности физической нагрузки организма.

Параметры – температура окружающих предметов и интенсивность физической нагрузки организма – характеризуют конкретную производственную обстановку и отличаются большим многообразием. Остальные параметры – температура, скорость, относительная влажность и атмосферное давление окружающего воздуха – получили название параметров микроклимата.

Микроклимат на раб. месте характеризуется:

Температура, t, °С;

Относительная влажность, j, %;

Скорость движения воздуха на раб. месте, u, м/с;

Интенсивность теплового излучения W, Вт/м 2 ;

Барометрическое давление, р, мм рт. ст. (не нормируется)

Параметры микроклимата оказывают непосредственное влияние на тепловое самочувствие человека и его работоспособность.

Рассматривают нагревающий, охлаждающий и динамический (с переходом от нагревающей в охлаждающую среду, и наоборот) микроклиматы .

Нагревающий микроклимат - сочетание параметров микроклимата (температура воздуха, его влажность, скорость движения, относительная влажность, тепловое излучение), при котором имеет место нарушение теплообмена человека с окружающей средой, выражающееся в накоплении тепла в организме человека выше верхней границы оптимальной величины (более 0,87 кДж/кг) и (или) в увеличении доли потерь тепла с испарениями пота (более 30 %) в общей структуре теплового баланса, в появлении общих или локальных дискомфортных теплоощущений (слегка тепло, тепло, жарко). На объектах ж/д транспорта к зонам с нагревающим микроклиматом относят тепляки, где производится оттайка смерзшегося при перевозке сыпучего груза, кабины локомотивов в летнее время, термические, гальванические, сварочные, горячие цеха на предприятиях по ремонту подвижного состава.

Охлаждающий микроклимат - сочетание параметров микроклимата͵ при котором имеет место изменение теплообмена организма, приводящее к образованию общего или локального дефицита тепла в организме (менее 0,87 кДж/кг) в результате снижения температуры глубоких и поверхностных слоев тканей организма человека. На объектах желœезнодорожного транспорта к зонам с охлаждающим микроклиматом относят: на желœезнодорожных путях в холодные периоды года, работ в охлаждаемых складах и вагонах.

Динамическим микроклиматом считаются условия труда, при котором в течение рабочей смены производственная деятельность работника осуществляется в различном микроклимате - попеременно нагревающем и охлаждающем. С динамическим микроклиматом - зоны производства работ по погрузке-разгрузке грузов из холодильных складов в рефрижераторные вагоны, осуществляемой в летний период года через открытие пространства.

К примеру, понижение температуры и повышение скорости воздуха способствуют усилению конвективного теплообмена и процесса теплоотдачи при испарении пота͵ что может привести к переохлаждению организма. Повышение скорости воздуха ухудшает самочувствие, так как способствует усилению конвективного теплообмена и процессу теплоотдачи при испарении пота. При повышении температуры воздуха возникают обратные явления. Исследователями установлено, что при температуре воздуха более 30 °С работоспособность человека начинает падать. Для человека определœены максимальные температуры в зависимости от длительности их воздействия и используемых средств защиты. Предельная температура вдыхаемого воздуха, при которой человек в состоянии дышать в течение нескольких минут без специальных средств защиты, около 116 °С.

Переносимость человеком температуры, как и его теплочувство, в значительной мере зависит от влажности и скорости окружающего воздуха. Чем больше относительная влажность, тем меньше испаряется пота в единицу времени и тем быстрее наступает перегрев тела.

Особенно неблагоприятное воздействие на тепловое самочувствие человека оказывает высокая влажность при t ос > 30 °С, так как при этом почти всœе выделяемая теплота отдается в окружающую среду при испарении пота. При повышении влажности пот не испаряется, а стекает каплями с поверхности кожного покрова. Возникает так называемое проливное течение пота͵ изнуряющее организм и не обеспечивающее необходимую теплоотдачу.

Недостаточная влажность воздуха также может оказаться неблагоприятной для человека вследствие интенсивного испарения влаги со слизистых оболочек, их пересыхания и растрескивания, а затем и загрязнения болезнетворными микроорганизмами. По этой причине при длительном пребывании людей в закрытых помещениях рекомендуется ограничиваться относительной влажностью в пределах 30...70 %.

Повышенная влажность на предприятиях желœезнодорожного транспорта свойственна участкам мойки подвижного состава, где относительная влажность может достигать 95 %, в цехах, где установлены моечные ванны или действуют оросительные устройства. Высокая влажность также присутствует в тоннелях, при работах в непогоду на желœезнодорожных путях.

На объектах желœезнодорожного транспорта сквозняки наличествуют в транспортных средствах, кабинах машинистов, в ремонтных цехах, при работе на желœезнодорожных путях в ветреную погоду.

Вопреки установившемуся мнению величина потовыделœения мало зависит от недостатка воды в организме или от ее чрезмерного потребления. У человека, работающего в течение 3 ч без питья, образуется только на 8 % меньше пота͵ чем при полном возмещении потерянной влаги. При потреблении воды вдвое больше потерянного количества наблюдается увеличение потовыделœения всœего на 6 % по сравнению со случаем, когда вода возмещалась на 100 %. Считается допустимым для человека снижение его массы на 2...3 % путем испарения влаги – обезвоживание организма. Обезвоживание на 6 % влечет за собой нарушение умственной деятельности, снижение остроты зрения; испарение влаги на 15...20 % приводит к смертельному исходу.

Вместе с потом организм теряет значительное количество минœеральных солей (до 1 %, в том числе 0,4...0,6 NaCI). При неблагоприятных условиях потеря жидкости может достигать 8–10 л за смену и в ней до 60 г поваренной соли (всœего в организме около 140 г NaCI). Потеря соли лишает кровь способности удерживать воду и приводит к нарушению деятельности сердечно-сосудистой системы. При высокой температуре воздуха легко расходуются углеводы, жиры, разрушаются белки.

Для восстановления водного баланса работающих в горячих цехах устанавливают пункты подпитки подсоленной (около 0,5 % NaCI) газированной питьевой водой из расчета 4...5 л на человека в смену. На ряде заводов для этих целœей применяют белково-витаминный напиток. В жарких климатических условиях рекомендуется пить охлажденную питьевую воду или чай.

Длительное воздействие высокой температуры особенно в сочетании с повышенной влажностью может привести к значительному накоплению теплоты в организме и развитию перегревания организма выше допустимого уровня – гипертермии – состоянию, при котором температура тела поднимается до 38...39 °С. При гипертермии и как следствие тепловом ударе наблюдаются головная боль, головокружение, общая слабость, искажение цветового восприятия, сухость во рту, тошнота͵ рвота͵ обильное потовыделœение. Пульс и дыхание учащены, в крови увеличивается содержание азота и молочной кислоты. При этом наблюдается бледность, синюшность, зрачки расширены, временами возникают судороги, потеря сознания.

Производственные процессы, выполняемые при пониженной температуре, большой подвижности и влажности воздуха, бывают причиной охлаждения и даже переохлаждения организма гипотермии. В начальный период воздействия умеренного холода наблюдается уменьшение частоты дыхания, увеличение объема вдоха. При продолжительном действии холода дыхание становится неритмичным, частота и объем вдоха увеличивается, изменяется углеводный обмен. Прирост обменных процессов при понижении температуры на 1 °С составляет около 10 %, а при интенсивном охлаждении он может возрасти в 3 раза по сравнению с уровнем основного обмена. Появление мышечной дрожи, при которой внешняя работа не совершается, а вся энергия превращается в теплоту, может в течение некоторого времени задер­живать снижение температуры внутренних органов. Результатом дей­ствия низких температур являются холодовые травмы.

Нагретые поверхности излучают в пространство потоки лучистой энергии, кото­рые могут привести к отрицательным последствиям. При температуре до 500 °С с нагретой поверхности излучаются тепловые (инфракрасные) лучи, а при более высокой температуре наряду с возрастанием инфракрасного излучения появляются видимые световые и ультрафиолетовые лучи.

Инфракрасные лучи оказывают на организм человека в основном тепловое действие. Под влиянием теплового облучения в организме происходят биохимические сдвиги, уменьшается кислородная насы­щенность крови, понижается венозное давление, замедляется кровоток и как следствие наступает нарушение деятельности сердечно-сосуди­стой и нервной систем.

Тепловые излучения глубоко проникают в ткани и разогревают их, вызывая быструю утомляемость, понижение внимания, усиленное потовыделœение, вызвать ожог кожи и глаз, а при длительном облучении - тепловой удар. Наиболее частым и тяжелым поражением глаз вследствие воздействия инфракрасных лучей является катаракта глаза.

Кроме непосредственного воздействия на человека лучистая теп­лота нагревает окружающие конструкции. Эти вторичные источники отдают теплоту окружающей среде излучением и конвекцией, в резуль­тате чего температура воздуха внутри помещения повышается.

Атмосферное давление оказывает существенное влияние на про­цесс дыхания и самочувствие человека. В случае если без воды и пищи человек может прожить несколько дней, то без кислорода - всœего несколько минут.

Наличие кислорода во вдыхаемом воздухе - крайне важное, но не­достаточное условие для обеспечения жизнедеятельности организма. Интенсивность диффузии кислорода в кровь определяется парциаль­ным давлением кислорода в альвеолярном воздухе.

Наиболее успешно диффузия кислорода в кровь происходит при парциальном давлении кислорода в пределах 95...120мм рт. ст. Изменение Po 2 вне этих пределов приводит к затруднению дыхания и увеличению нагрузки на сердечно-сосудистую систему. Так, на высоте 2...3 км (Po 2 ≈ 70мм рт. ст.) насыщение крови кислородом снижается до такой степени, что вызывает усиление деятельности сердца и легких. С высоты 4 км (Po 2 ≈60мм рт. ст.) диффузия кислорода из легких в кровь снижается до такой степени, что, несмотря на большое содержание кислорода (Vo 2 ≈21 %), может наступить кислородное голодание – гипоксия. Основные признаки гипоксии – головная боль, головокружение, замедленная реакция, нарушение нормальной работы органов слуха и зрения, нарушение обмена веществ.

Как показали исследования, удовлетворительное самочувствие человека при дыхании воздухом сохраняется до высоты около 4 км, чистым кислородом (VO 2 = 100 %) до высоты около 12 км. При длительных полетах на летательных аппаратах на высоте более 4кмприменяют либо кислородные маски, либо скафандры, либо герметизацию кабин.

Нормы производственного микроклимата установлены системой стандартов безопасности труда ГОСТ 12.1.005–88 (1991) «Общие санитарно-гигиенические требования к воздуху рабочей зоны» и СанПиН 2.2.4.584-96 . Οʜᴎ едины для всœех производств и всœех климатических зон с некоторыми незначительными отступлениями.

В соответствии с ГОСТ 12.1.005-88 нормируемые параметры микроклимата подразделяются на оптимальные и допустимые.

Оптимальные параметры микроклимата - такое сочетание температуры, относит. влажности и скорости воздуха, ĸᴏᴛᴏᴩᴏᴇ при длительном и систематическом воздействии не вызывает отклонений в состоянии человека.

t = 22 - 24 °С, j = 40 - 60 %, V £ 0,2 м/с

Допустимые параметры микроклимата - такое сочетание параметров микроклимата͵ ĸᴏᴛᴏᴩᴏᴇ при длительном воздействии вызывает приходящее и быстро нормализующееся изменение в состоянии работающего.

t = 22 - 27 °С, j £ 75 %, V = 0,2-0,5 м/с

Рабочая зона - пространство над уровнем горизонтальной поверхности, где выполняется работа͵ высотой 2 метра.

Рабочее место - место (м.б. постоянным или непостоянным), где выполняется технологическая операция.

Для определœения нормы микроклимата на рабочем месте, крайне важно знать 2 фактора:

1. Период года.

В этих нормах отдельно нормируется каждый компонент микроклимата в рабочей зоне производственного помещения: температура, относительная влажность, скорость воздуха в зависимости от способности организма человека к акклиматизации в разное время года, характера одежды, интенсивности производимой работы и характера тепловыделœений в рабочем помещении.

Для оценки характера одежды (теплоизоляции) и акклиматизации организма в разное время года введено понятие периода года . Различают теплый и холодный период года. Теплый период года характеризуется среднесуточной температурой наружного воздуха +10 °С и выше, холодный – ниже +10 °С.

При учете интенсивности труда всœе виды работ , исходя из общих энергозатрат организма, делятся на три категории: легкие, средней тяжести и тяжелые.

Вид работы Характеристика Энергозатраты Примеры профессий
1 Легкие (категория I) не более 150 ккал (174 Вт)
категория Iа Работы, производимые сидя и сопровождающиеся незначительным физическим напряжением. до 120 ккал/ч (139 Вт) ряд профессий на предприятиях точного приборо- и машиностроения, на часовом, швейном производствах, в сфере управления и т.п.
категория Iб Работы, производимые сидя, стоя или связанные с ходьбой и сопровождающиеся некоторым физическим напряжением. 121-150 ккал/ч (140-174 Вт) ряд профессий в полиграфической промышленности, на предприятиях связи, контролеры, мастера в различных видах производства и т.п.
2 Средней тяжести (категория II) в пределах 151-250 ккал/ч (175-290 Вт).
категория IIа Работы, связанные с постоянной ходьбой, перемещением мелких (до 1 кг) изделий или предметов в положении стоя или сидя и требующие определœенного физического напряжения. от 151 до 200 ккал/ч (175-232 Вт) ряд профессий в механо-сборочных цехах машиностроительных предприятий, в прядильно-ткацком производстве и т.п.
категория IIб Работы, связанные с ходьбой, перемещением и переноской тяжестей до 10 кг и сопровождающиеся умеренным физическим напряжением. от 201 до 250 ккал/ч (233-290 Вт) ряд профессий в механизированных литейных, прокатных, кузнечных, термических, сварочных цехах машиностроительных и металлургических предприятий и т.п.
3 Тяжелые (категория III) Работы, связанные с постоянными перемещениями, перемещением и переноской значительных (свыше 10 кг) тяжестей и требующие больших физических усилий. более 250 ккал/ч (290 Вт) ряд профессий в кузнечных цехах с ручной ковкой, литейных цехах с ручной набивкой и заливкой опок машиностроительных и металлургических предприятий и т.п.

В рабочей зоне производственного помещения согласно ГОСТ 12.1.005–88 бывают установлены оптимальные и допустимые микроклиматические условия.

Оптимальные микроклиматические условия – это такое сочетание параметров микроклимата͵ ĸᴏᴛᴏᴩᴏᴇ при длительном и систематическом воздействии на человека обеспечивает чувство теплового комфорта и создает предпосылки для высокой работоспособности. Оптимальные параметры микроклимата в производственных помещениях обеспечиваются системами кондиционирования воздуха.

Допустимые микроклиматические условия – это такие сочетания параметров микроклимата͵ которые при длительном и систематическом воздействии на человека могут вызвать напряжение реакций терморегуляции и которые не выходят за пределы физиологических приспособительных возможностей. При этом не возникает нарушений в состоянии здоровья, не наблюдаются дискомфортные теплоощущения, ухудшающие самочувствие и понижение работоспособности. Допустимые параметры в производственных помещениях обеспечиваются обычными системами вентиляции и отопления.

Методы снижения неблагоприятного влияния производственного микроклимата регламентируются «Санитарными правилами по организации технологических процессов и гигиеническими требованиями к производственному оборудованию» и реализуются комплексом технологических, санитарно-технических, организационных и медико-профилактических мероприятий.

Ведущая роль в профилактике вредного влияния высоких температур, инфракрасного излучения принадлежит технологическим мероприятиям : замена старых и внедрение новых технологических процессов и оборудования, способствующих оздоровлению неблагоприятных условий труда (к примеру, замена кольцевых печей для сушки форм и стержней в литейном производстве туннельными; применение штамповки вместо поковочных работ; применение индукционного нагрева металлов токами высокой частоты и т.д.) Внедрение автоматизации и механизации дает возможность пребывания рабочих вдали от источника радиационной и конвекционной теплоты.

К группе санитарно-технических мероприятий относится применение коллективных средств защиты: локализация тепловыделœений, теплоизоляция горячих поверхностей, экранирование источников либо рабочих мест; воздушное душирование, радиационное охлаждение, мелкодисперсное распыление воды; общеобменная вентиляция или кондиционирование воздуха.

Локализация тепловыделœений. Уменьшению поступления теплоты в цех способствуют мероприятия, обеспечивающие герметичность оборудования (плотно подогнанные дверцы, заслонки, блокировка закрытия технологических отверстий с работой оборудования).

Теплоизоляция поверхностей источников излучения (печей, сосудов и трубопроводов с горячими газами и жидкостями) снижает температуру излучающей поверхности и уменьшает как общее тепловыделœение, так и радиационное. Кроме улучшения условий труда тепловая изоляция уменьшает тепловые потери оборудования, снижает расход топлива (электроэнергии, пара) и приводит к увеличению производительности агрегатов. Следует иметь в виду, что тепловая изоляция, повышая рабочую температуру изолируемых элементов, может резко сократить срок их службы, особенно в тех случаях, когда теплоизолируемые конструкции находятся в температурных условиях, близких к верхнему допустимому пределу для данного материала. В таких случаях решение о тепловой изоляции должно быть проверено расчетом рабочей температуры изолируемых элементов. В случае если она окажется выше предельно допустимой, защита от тепловых излучений должна осуществляться другими способами.

Теплозащитные экраны применяют для локализации источников лучистой теплоты, уменьшения облученности на рабочих местах и снижения температуры поверхностей, окружающих рабочее место. Ослабление теплового потока за экраном обусловлено его поглотительной и отражательной способностью.

При воздействии на работающего теплового облучения интенсивностью 0,35 кВт/м 2 и более, а также 0,175...0,35 кВт/м 2 при площади излучающих поверхностей в пределах рабочего места более 0,2 м 2 применяют воздушное душирование (подачу воздуха в виде воздушной струи, направленной на рабочее место). Воздушное душирование устраивают также для производственных процессов с выделœением вредных газов или паров и при невозможности устройства местных укрытий.

Воздушные завесы предназначены для защиты от прорыва холодного воздуха в помещение через проемы здания (ворота͵ двери и т.п.). Воздушная завеса представляет собой воздушную струю, направленную под углом навстречу холодному потоку воздуха.

Воздушные оазисы предназначены для улучшения метеорологических условий труда (чаще отдыха на ограниченной площади). Для этого разработаны схемы кабин с легкими передвижными перегородками, которые затапливаются воздухом с соответствующими параметрами.

Мероприятия по профилактике неблагоприятного воздействия холода должны предусматривать предупреждение выхолаживания производственных помещений, использование средств индивидуальной защиты, подбор рационального режима труда и отдыха. Спецодежда должна быть воздухо- и влагонепроницаемой (хлопчатобумажная, льняная, грубошерстное сукно), иметь удобный покрой. Для работы в экстремальных условиях (ликвидация пожаров и др.) применяют специальные костюмы, обладающие повышенной теплосветоотдачей. Для защиты головы от излучения применяют дюралевые, фибровые каски, войлочные шляпы; для защиты глаз – очки темные или с прозрачным слоем металла, маски с откидным экраном.

Важным фактором, способствующим повышению работоспособности рабочих в горячих цехах, является рациональный режим труда и отдыха . Он разрабатывается применительно к конкретным условиям работы. Частые короткие перерывы более эффективны для поддержания работоспособности, чем редкие, но продолжительные. При физических работах средней тяжести на открытом воздухе с температурой до 25 °С внутренний режим предусматривает 10-минутные перерывы после 50...60 мин работы; при температуре наружного воздуха 25...33 °С рекомендуется 15-минутный перерыв после 45 мин работы и разрыв рабочей смены на 4...5 ч на период наиболее жаркого времени.

При кратковременных работах в условиях высоких температур (тушении пожаров, ремонте металлургических печей), где температура достигает 80...100° С, большое значение имеет тепловая тренировка. Устойчивость к высоким температурам может быть в некоторой степени повышена с использованием фармакологических средств (дибазола, аскорбиновой кислоты, смеси этих веществ и глюкозы), вдыхания кислорода, аэроионизации.

При нефиксированных рабочих местах и работе на открытом воздухе в холодных климатических условиях организуют специальные помещения для обогревания. При неблагоприятных метеорологических условиях–температура воздуха -10 °С и ниже –обязательны перерывы на обогрев продолжительностью 10... 15 мин каждый час. При температуре наружного воздуха -30...-45 °С 15-минутные перерывы на отдых организуются каждые 60 мин от начала рабочей смены и после обеда, а затем через каждые 45 мин работы. В помещениях для обогрева крайне важно предусматривать возможность питья горячего чая.

Эффективным средством обеспечения надлежащей чистоты и допустимых параметров микроклимата воздуха рабочей зоны является промышленная вентиляция. Вентиляцией принято называть организованный и регулируемый воздухообмен, обеспечивающий удаление из помещения загрязненного воздуха и подачу на его место свежего.

По способу перемещения воздуха различают системы естественной и механической вентиляции.

Система вентиляции, перемещение воздушных масс в которой осуществляется благодаря возникающей разности давлений снаружи и внутри здания, принято называть естественной вентиляцией. Разность давлений обусловлена разностью плотностей наружного и внутреннего воздуха (гравитационное давление, или тепловой напор ∆Рт) и ветровым напором ∆Рв, действующим на здание.

При действии ветра на поверхностях здания с подветренной стороны образуется избыточное давление, на заветренной стороне – разряжение. Распределœение давлений по поверхности зданий и их величина зависят от направления и силы ветра, а также от взаиморасположения зданий.

Неорганизованная естественная вентиляция – инфильтрация, или естественное проветривание – осуществляется сменой воздуха в помещениях через неплотности в ограждениях и элементах строительных конструкций благодаря разности давления снаружи и внутри помещения. Такой воздухообмен зависит от случайных факторов–силы и направления ветра, температуры воздуха внутри и снаружи здания, вида ограждений и качества строительных работ. Инфильтрация может быть значительной для жилых зданий и достигать 0,5...0,75 объема помещения в час, а для промышленных предприятий до 1...1.5 ч -1 .

Для постоянного воздухообмена, требуемого по условиям поддержания чистоты воздуха в помещении, необходима организованная вентиляция. Для увеличения располагаемого давления в системах естественной вентиляции на устье вытяжных шахт устанавливают насадки – дефлекторы. Усиление тяги происходит благодаря разрежению, возникающему при обтекании дефлектора.

Аэрацией принято называть организованная естественная общеобменная вентиляция помещений в результате поступления и удаления воздуха через открывающиеся фрамуги окон и фонарей. Воздухообмен в помещении регулируют различной степенью открывания фрамуг (в зависимости от температуры наружного воздуха, скорости и направления ветра). Как способ вентиляции, аэрация нашла широкое применение в промышленных зданиях, характеризующихся технологическими процессами с большими тепловыделœениями (прокатных цехах, литейных, кузнечных). Поступление наружного воздуха в цех в холодный период года организуют так, чтобы холодный воздух не попадал в рабочую зону. Для этого наружный воздух подают в помещение через проемы, расположенные не ниже 4,5 м от пола, в теплый период года приток наружного воздуха ориентируют через нижний ярус оконных проемов (А = 1,5...2 м).

Основным достоинством аэрации является возможность осуществлять большие воздухообмены без затрат механической энергии. К недостаткам аэрации следует отнести то, что в теплый период года эффективность аэрации может существенно падать вследствие повышения температуры наружного воздуха и, кроме того, поступающий в помещение воздух не очищается и не охлаждается.

Вентиляция, с помощью которой воздух подается в производственные помещения или удаляется из них по системам вентиляционных каналов с использованием для этого специальных механических побудителœей, принято называть механической вентиляцией.

Механическая вентиляция, по сравнению с естественной, имеет ряд преимуществ :

Независимость от погодных условий,

Возможность подготовки подаваемого в помещение и очистки удаляемого из помещения воздуха,

Большой радиус действия, возможность организовывать оптимальное воздухораспределœение.

Возможность создания условий для подачи (удаления) воздуха непосредственно к рабочему месту.

К недостаткам механической вентиляции следует отнести:

Постоянный шум и крайне важность проведения мероприятий по его снижению;

Незначительный объем вентилируемого воздуха;

Высокие капитальные затраты (требуются вентиляторы, калориферы, фильтры, воздуховоды, воздухозаборы, нагреватели или холодильно-сушильные агрегаты и т.д.);

Значительные эксплуатационные расходы (затраты на электроэнергию, обслуживание и текущий ремонт).

Системы механической вентиляции подразделяются на общеобменные, местные, смешанные, аварийные и системы кондиционирования.

Общеобменная вентиляция предназначена для ассимиляции избыточной теплоты, влаги и вредных веществ во всœем объеме рабочей зоны помещений. Она применяется в том случае, если вредные выделœения поступают непосредственно в воздух помещения, рабочие места не фиксированы, а располагаются по всœему помещению. Обычно объем воздуха L пр, подаваемого в помещение при общеобменной вентиляции, равен объему воздуха L B , удаляемого из помещения. При этом в ряде случаев возникает крайне важность нарушить это равенство. Так, в особо чистых цехах электровакуумного производства, для которых большое значение имеет отсутствие пыли, объем притока воздуха делается больше объема вытяжки, за счет чего создается некоторый избыток давления в производственном помещении, что исключает попадание пыли из сосœедних помещений. В общем случае разница между объемами приточного и вытяжного воздуха не должна превышать 10...15 %.

По способу подачи и удаления воздуха различают четыре схемы общеобменной вентиляции: приточная, вытяжная, приточно-вытяжная и системы с рециркуляцией. По приточной системе воздух подается в помещение - после подготовки его в приточной камере. В помещении при этом создается избыточное давление, за счет которого воздух уходит наружу через окна, двери или в другие помещения. Приточную систему применяют для вентиляции помещений, в которые нежелательно попадание загрязненного воздуха из сосœедних помещений или холодного воздуха извне (вестибюли, лестничные клетки, тамбуры). Воздух из помещения удаляется через неплотности ограждающих конструкций.

Вытяжная система предназначена для удаления воздуха из помещения. При этом в нем создается пониженное давление и воздух сосœедних помещений или наружный воздух поступает в данное помещение. Вытяжную систему целœесообразно применять в том случае, если вредные выделœения данного помещения не должны распространяться на сосœедние, к примеру, для вредных цехов, химических и биологических лабораторий, санузлов, курительных комнат. Чистый воздух поступает в производственное помещение через неплотности в ограждающих конструкциях, что является недостатком данной системы вентиляции, так как неорганизованный приток холодного воздуха (сквозняки) может вызвать простудные заболевания.

Приточно-вытяжная вентиляция – наиболее распространенная система, при которой воздух подается в помещение приточной системой, а удаляется вытяжной; системы работают одновременно.

В отдельных случаях для сокращения эксплуатационных расходов на нагревание воздуха применяют системы вентиляции с частичной рециркуляцией. В них к поступающему снаружи воздуху подмешивают воздух, отсасываемый из помещения вытяжной системой. Свежая порция воздуха в таких системах обычно составляет 20...10 % общего количества подаваемого воздуха. Систему вентиляции с рециркуляцией разрешается использовать только для тех помещений, в которых отсутствуют выделœения вредных веществ или выделяющиеся вещества относятся к 4-му классу опасности и концентрация их в воздухе, подаваемом в помещение, не превышает 30 % ПДК. Применение рециркуляции не допускается и в том случае, если в воздухе помещений содержатся болезнетворные бактерии, вирусы или имеются резко выраженные неприятные запахи.

С помощью местной вентиляции необходимые метеорологические параметры создаются на отдельных рабочих местах. К примеру, улавливание вредных веществ непосредственно у источника возникновения, вентиляция кабин наблюдения и т.д. Наиболее широкое распространение находит местная вытяжная локализующая вентиляция. Основной метод борьбы с вредными выделœениями заключается в устройстве и организации отсосов от укрытий.

Конструкции местных отсосов бывают полностью закрытыми, полуоткрытыми или открытыми. Наиболее эффективны закрытые отсосы. К ним относятся кожухи, камеры, герметично или плотно укрывающие технологическое оборудование. В случае если такие укрытия устроить невозможно, то применяют отсосы с частичным укрытием или открытые: вытяжные зонты, отсасывающие панели, вытяжные шкафы, бортовые отсосы и др.

Один из самых простых видов местных отсосов – вытяжной зонт . Он служит для улавливания вредных веществ, имеющих меньшую плотность, чем окружающий воздух. Зонты устанавливают над ваннами различного назначения, электро- и индукционными печами и над отверстиями для выпуска металла и шлака из вагранок. Зонты делают открытыми со всœех сторон и частично открытыми: с одной, двух и трех сторон.

Отсасывающие панели применяют дня удаления вредных выделœений, увлекаемых конвективными токами, при таких ручных операциях, как электросварка, пайка, газовая сварка, резка металла и т.п. Вытяжные шкафы – наиболее эффективное устройство по сравнению с другими отсосами, так как почти полностью укрывают источник выделœения вредных веществ. Незакрытыми в шкафах остаются лишь проемы для обслуживания, через которые воздух из помещения поступает в шкаф. Форму проема выбирают в зависимости от характера технологических операций.

Смешанная система вентиляции является сочетанием элементов местной и общеобменной вентиляции. Местная система удаляет вредные вещества из кожухов и укрытий машин. При этом часть вредн

Характер и организация деятельности человека оказывают существенное влияние на функциональное состояние организма человека о определяются физическими нагрузками, двигательной активностью, нервно-психологическими нагрузками (умственным напряжением, эмоциональными нагрузками, напряжением зрения, слуха и т.д.). Жизнедеятельность человека протекает в постоянном контакте со средой обитания, окружающими предметами, людьми. Среда обитания может оказывать благоприятное или неблагоприятное влияние на состояние здоровья человека, его работоспособность и самочувствие. Параметры окружающей среды, при которых создаются наилучшие для организма человека условия жизнедеятельности, называются комфортными.

Параметры микроклимата и состава воздуха, порядок их контроля.

Микроклимат производственных помещений (СН 4088) - климат внутренней среды этих помещений, который определяется действующими на организм человека сочетаниями - температуры, влажности и скорости движения воздуха, а также температуры окружающих поверхностей.

Микроклимат можно классифицировать следующим образом:

а) комфортный (сборочные цехи, операторские);

б) с повышенной влажностью, при нормальной и низкой температуре воздуха (рыбообрабатывающие цехи); при высокой температуре воздуха (красильные цехи);

в) переменный (при работе на открытом воздухе);

г) нагревающий с преобладанием радиационной теплоты (прокатные, литейные цехи), и с преобладанием конвекционной теплоты (химические цехи и др.);

д) охлаждающий с субнормальными температурами воздуха (от +10° до -10°С - судостроительное производство) и с низкими температурами воздуха (ниже -10°с - холодильные камеры).

Метеорологические условия в производственном помещении зависит от ряда факторов: климатического пояса и сезона года, характера технологического процесса и вида используемого оборудования, условий воздухообмена, размеров помещения, числа работающих и т.д. Микроклимат производственных помещений, особенно температура воздуха и интенсивность инфракрасного излучения, может меняться на протяжении рабочей смены, быть различными на отдельных участках одного и того же цеха и др.

Температура воздуха - степень его нагретости, выражаемая в градусах. Высокая температура воздуха наблюдается в помещении, где технологические процессы сопровождаются значительными тепловыделениями.

К числу таких цехов относятся: доменные, конверторные, мартеновские, электросталеплавильные, прокатные, литейные, кузнечные, термические и др. Высокая температура воздуха наблюдается также в ряде производств текстильной, резиновой, швейной, пищевой, химической промышленности, в производстве строительных материалов (стекло, кирпич и др.).

Низкая температура воздуха имеет место при работах на открытом воздухе зимой и в переходные периоды года (строительные, лесозаготовительные работы, торфяные и иные разработки, добыча нефти и газа и др.) при обслуживании искусственно охлажденных помещений, в частности холодильных камер.

Инфракрасная радиация - электромагнитное излучение с длиной волны от 0,76 до 500 мкм.

В горячих цехах с выделением теплоты в цехе свыше 23 Вт/м3 на долю инфракрасной радиации может приходиться около 2/3 общей теплоты, поступившей в помещение цеха.

Влажность воздуха - содержание в нем паров воды -характеризуется следующими понятиями: абсолютная влажность, которая выражается параллельным давлением водяных паров (Па) или в весовых единицах в определенном объеме воздуха (г/м3), максимальная влажность количество влаги при полном насыщении воздуха при данной температуре, относительная влажность - отношение абсолютной влажности к максимальной, выраженное в процентах

На ряде производств имеет место высокая относительная влажность воздуха - красильно-отделочные фабрики, травильные и гальванические отделения машиностроительных заводов, кожевенное, бумажное и другие производства. В некоторых цехах (прядильные, ткацкие фабрики) высокая влажность поддерживается искусственно при помощи специальных увлажнительных установок.

Движение воздуха, измеренное в метрах в секунду, создается в результате разности температур в смежных участках помещения, проникновения в помещения холодных потоков воздуха извне при работе вентиляционной системы и др., может обуславливаться особенностями технологического процесса перемещениями машин, агрегатов, людей.

Гигиеническое нормирование.

Оценка производственного -микроклимата осуществляется в соответствии с «Санитарными нормами и правилами микроклимата производственных помещений» № 4088-86 и ГОСТ 12-1-005-88 ССБТ «Общие санитарно-гигиенические требования к воздуху рабочей зоны».

Нормы регламентируют температуру воздуха, его относительную влажность, скорость движения, интенсивность теплового облучения для рабочей силы в виде оптимальных и допустимых величин с учетом сезона года и тяжести трудовой деятельности. Они содержат такие методы измерения показателей микроклимата и их оценку.

Оптимальные микроклиматические условия - сочетание параметров микроклимата, которые при длительном и систематическом воздействии на человека обеспечивают сохранение нормального теплового состояния организма без напряжения механизмов терморегуляции. Они обеспечивают ощущение теплового комфорта и создают предпосылки для высокого уровня работоспособности.

Допустимые микроклиматические условия - сочетания параметров микроклимата, которые при длительном и систематическом воздействии на человека могут вызывать преходящие и быстро нормализующиеся изменения теплового состояния организма, сопровождающихся напряжением механизмов терморегуляции, не выходящим за пределы физиологических приспособительных возможностей. При этом не возникает повреждений или нарушений состояния здоровья, не могут наблюдаться дискомфортные термоощущения, ухудшение самочувствия и понижения работоспособности.

Допустимые величины показателей микроклимата устанавливаются в случаях, когда по технологическим требованиям производства, техническим и экономическим причинам еще не представляется возможным обеспечить оптимальные нормы.

В кабинетах, пультах и постах управления технологическими процессами, в залах вычислительной техники, а также в других помещениях при выполнении работ операторского типа, связанных с нервно-эмоциональным напряжением, должны соблюдаться оптимальные величины температуры воздуха (22 - 24°С), его относительной влажности (60 - 40%) и скоростью движения (не более 0,1 м/с).

При обеспечении оптимальных показателей микроклимата температура внутренних поверхностей, а также температура наружных поверхностей технического оборудования не должна выходить более чем на 2 С за пределы оптимальных величин температуры воздуха, установленных для отдельных категорий работ. При температуре внутренних поверхностей, ограждающих конструкцию ниже или выше оптимальных величин температуры воздуха, рабочие места должны быть удалены от них на расстояние не менее 1 м.

Переходы температуры воздуха по высоте рабочей зоны при всех категориях работ допускаются до 30°С.

Таблица 1.

Нормируемые величины температуры, относительной влажности и скорости движения воздуха в рабочей зоне производственных помещений.

Температура, "С

Относительная

Скорость движения,

влажность, %

Допустимые

Допустимая

границы на

постоянных

постоянн

постоянных

Не более 0,1

легкая- 1 Б

Не более 0.2

Не более 0.3

Не более 0.4

Тяжелая -

Не более 0,5

легкая- 1 Б

Тяжелая -

Интенсивность теплового облучения работающих от нагретых поверхностей технологического оборудования, осветительных приборов, инсоляции на постоянных и непостоянных рабочих местах не должна превышать 35 вт/м 2 при облучений 50% поверхности тела, более 70 вт/м 2 при величине облучаемой поверхности от 25 до 50% и 100 вт/м 2 - при облучении не более25% поверхности тела.

Интенсивность теплового облучения работающих у открытых источников (нагретый металл, стекло, открытое пламя) не должно превышать 140 вт/м 2 при облучении не более 25% поверхности тела и обязательном использовании средств индивидуальной защиты, в том числе средств защиты лица и глаз.

В производственных помещениях, расположенных в южных районах страны с повышенной относительной влажностью наружного воздуха, допускается в теплый период года повышать относительную влажность воздуха, но не более на 10% по отношению к допустимым величинам приведенных в Табл. 1 для различных параметров температуры воздуха.

В производственных помещениях, где из-за технологических требований к производственному процессу, технической недостижимости их обеспечения или экономической обоснованности нецелесообразности, невозможно установить допустимые величины микроклимата, должны быть предусмотрены мероприятия по защите работающих от возможного перегрева и охлаждения.

Система вентиляции, воздушное душирование, воздушные оазисы, воздушные- и воздушно-тепловые завесы, кондиционирование воздуха, помещения для отдыха и обогревания, спецодежда для защиты от повышенной или пониженной температуры, средства индивидуальной защиты, регламентация времени работы и отдыха.

В целях профилактики тепловых травм температура охлаждающих устройств не должна превышать 45°С.

Система вентиляции представляет собой комплекс устройств, обеспечивающих воздухообмен в помещении, т.е. удаление из помещения загрязненного, нагретого, влажного воздуха. По зоне действия вентиляция бывает общественная, при которой воздухообмен охватывает все

помещение и местная, когда обмен воздухом осуществляется на ограниченном участке помещения. По способу перемещения воздуха из помещения в помещение вентиляция разделяется на естественную и механическую.

Воздухообмен при естественной вентиляции осуществляется за счет разницы давлений снаружи и внутри здания. Разность давлений обусловлена, прежде всего, тепловым напором, возникающим из-за того, что более теплый воздух в помещении имеет меньшую плотность, чем более холодный снаружи помещения. В результате более теплый воздух помещения через вытяжные трубы, а его место занимает свежий и более прохладный воздух, поступающий, в помещение через окна, двери, форточки, фрамуги, щели.

Достоинством естественной вентиляции является отсутствие затрат энергии на передвижение масс воздуха в помещение и из него. Однако естественная вентиляция имеет очень существенный недостаток, а именно: в теплый период года и в безветренную погоду ее эффективность может падать.

Естественная вентиляция, как средство поддержания параметров микроклимата и оздоровления воздушной среды в помещении, применяется для непроизводственных помещений - бытовых помещений (квартир) и помещений, в которых в результате работы человека не выделяется вредных веществ, избыточной влаги или тепла.

Механической называется вентиляция, в которой воздух подается в помещения и удаляется из него по системам вентиляционных каналов с использованием специальных механических побудителей - вентиляторов.

Механическая вентиляция может быть приточной, в которой воздух вентилятором подается в помещение; вытяжной, в которой воздух удаляется из помещения, и приточно-вытяжной, в которой свежий воздух удаляется их помещения. Приточный и удаляемый вентиляционными системами воздух, как правило, подвергается обработке - нагреву или охлаждению, увлажнению или очистке загрязнений.

Подогрев воздуха осуществляется в холодный период года специальными устройствами - калориферами, обогреваемыми горячей водой или паром.

Охлаждение воздуха осуществляется пропусканием его через оросительную камеру (орошение осуществляется холодной водой), где также происходит его увлажнение.

Если воздух сильно запылен или в помещении выделяются вредные вещества, то в приточную или вытяжную систему встраивается очистительные устройства. В приточную систему устанавливаются, как правило, тканевые или волокнистые фильтры, а в вытяжную могут устанавливаться разнообразные очистные устройства в зависимости от вида образующихся в помещении загрязняющих воздух веществ.

Общественная вентиляция предназначается для создания и поддержания необходимых параметров воздушной среды во всем объеме рабочей зоны помещений.

Местная вентиляция характеризуется тем, что с ее помощью необходимые метеорологические параметры создаются на отдельных рабочих местах.

К системам местной приточной вентиляции относятся воздушные души, воздушные завесы и воздушные оазисы.

Воздушное душирование в горячих цехах на рабочих местах, подвергаемых интенсивному воздействию тепловых потоков от печей, раскаленных отливок и других источников тепла. Воздушный душ представляет собой направленный на работающего человека поток воздуха со скоростью 1 0 3,5 м/с. Примером передвижного устройства воздушного душирования является бытовой вентилятор, применяемый в бытовых и непроизводственных помещениях в жаркую погоду, когда естественная вентиляция не может обеспечить тепловой баланс между человеком и

окружающей средой.

Воздушные оазисы позволяют улучшить метеорологические условия на ограниченном участке помещения, для чего этот участок со всех сторон отделяется перегородками и заполняется воздухом более прохладным и чистым, чем воздух в остальном помещении.

Воздушные и воздушно-тепловые завесы устраивают для защиты людей от охлаждения проникающим через ворота или двери холодным воздухом. Завесы бывают двух типов: воздушные с подачей воздуха без подогрева и воздушно-тепловые с подогревом подаваемого воздуха в калориферах.

Воздух для завесы подается.к дверным проемам через специальную щель и выходит с большой скоростью (10 - 15 м/с) под углом навстречу поступающему снаружи холодному воздуху. Примером воздушных завес являются применяемые в холодный период года во входных дверях магазинов, метро, учреждений воздушно-тепловые завесы.

Система местной вытяжной вентиляции предназначается для локализации и предотвращения распространения по всему помещению вредных веществ, избыточной влаги, тепла на отдельных участках производства. Устройства местной вытяжной вентиляции очень разнообразны. Наиболее распространены защитно-обеспыливающие кожухи, вытяжные шкафы, вытяжные зонты, всасываемые панели,различные отсосы.

Вытяжные шкафы находят широкое применение при различных операциях, связанных с вредных веществ и влаги, как правило, паров ми газов. Вытяжной шкаф представляет собой колпак необходимого объема, внутри которого выполняется операция и выделяются вредные вещества, которые собираются и поступают во всасывающий воздуховод. Вытяжные шкафы широко применяются на занятиях по химии при проведении экспериментов с веществами.

Для создания оптимальных метеорологических условий в помещениях все чаще применяют кондиционирование воздуха.

Кондиционированием воздуха называется автоматическое поддержание в помещениях заданных оптимальных параметров микроклимата и чистоты воздуха независимо от изменения наружных условий и режимов внутри помещения. При кондиционировании может автоматически регулироваться температура воздуха, его относительная влажность и скорость подачи в помещение. Создание таких параметров воздуха осуществляется в специальных установках и устройствах, называемых кондиционерами. Кондиционеры бывают местными - для обслуживания отдельных помещений, комнат, и центральными - для обслуживания групп помещений, цехов и производств в целом. Простейшими кондиционерами являются бытовые кондиционеры, которые можно увидеть встроенными в окна и закрепленными с наружной стороны стен помещений. Кондиционирование воздуха значительно дороже вентиляции, но обеспечивает наилучшие условия для жизни и деятельности человека.

Отопление.

Целью отопления помещений является поддержание в них в холодный период года заданной температуры воздуха. Системы отопления разделяются на: водяные, паровые, воздушные и комбинированные.

Системы водяного отопления нашли широкое распространение, они эффективны и удобны. В этих системах в качестве нагревательных приборов применяют радиаторы, ребристые и гладкие трубы.

Воздушная система отопления заключается в том, что подаваемый в помещение воздух предварительно нагревается в калориферах (водяных, паровых, электрических).

Отопление и вентиляция должны обеспечить температуру воздуха в классах, кабинетах, лабораториях химии и физики, в лекционных аудиториях, актовом зале, киноаудитории 17 - 20 С. В мастерских по обработке металла, дерева, где работа связана с большой энерготратой, температура воздуха не должна быть выше 16-18 °С, в лабораториях без выделения вредностей с точными измерительными приборами - 20°С,в спортивном зале и комнатах для проведения секционных занятий -15-17°С, в раздевалке или спортзале - 19-23°С, в кабинетах врачей - 21-23°С, в рекреационных помещениях - 16-18°С, в библиотеке, в помещениях абонемента, в комнате обработки и комплектования книг, в кабинетах администрации, комнатах общественных организаций - 17-21°С, в жилых комнатах общежитий - 18^20°С, в умывальбых - 20-23°С, в душевых - не ниже 25°С, в вестибюле и гардеробе - 16-19°С.

До и после учебно-производственных занятий необходимо осуществлять сквозное проветривание, длительность которого определяется погодными условиями. При температуре воздуха до -10°С минимальная длительность сквозного проветривания 1-3 мин.

Спортивные залы и помещения для проведения секционных занятий перед их началом необходимо хорошо проверить.

Сон и отдых учащихся должен проводиться в хорошо проветренных и аэрируемых через фрамуги и форточки помещениях.

Таким образом, основным методом обеспечения требуемых параметров микроклимата является применение систем вентиляции, отопления и кондиционирования воздуха.

Для обеспечения комфортных условий необходимо поддерживать тепловой баланс между выделениями теплоты организмом человека и отдачей тепла окружающей среде. Обеспечить тепловой баланс можно, регулируя значения параметров микроклимата в помещении. Благоприятные условия микроклимата обеспечиваются системами отопления и вентиляции, устройствами кондиционирования воздуха, правильной ориентацией окон по сторонам света и другими средствами.

Для отопления жилищ, школ, дошкольных учреждений, больниц и большинства общественных зданий наиболее используемым является центральное водяное отопление. Схема такого отопления включает: генератор тепла (котел, бойлер), разводящие трубы и стояки, обогревательные приборы (радиаторы). Во избежание ожогов и возгорания пыли температура поверхности радиаторов (батарей) водяного отопления не должна превышать 80 °С. Тепло от радиаторов отдается в помещение путем контакта их поверхности с воздухом. Поэтому подобное отопление называется конвекционным. Паровое отопление из-за высокой температуры поверхности радиаторов не пригодно для обогрева жилых и общественных зданий.

В последние годы все чаще используется центральное панельнолучистое отопление. При этой системе отопительные приборы представляют собой систему нагревательных труб в бетонных панелях, которые могут встраиваться в стены, пол или потолок. Через трубы пропускают горячую воду. Панели образуют большую теплоизлучающую поверхность, отдающую лучистое тепло всем другим поверхностям в помещении. Панели в стенах нагревают до 30...45 °С, в полу - до

24...26 °С, в потолке до 24...28 °С. При панельном отоплении обеспечивается равномерная температура воздуха по вертикали и горизонтали.

Лучистое отопление качественно изменяет теплообмен человека: уменьшаются потери излучением и соответственно могут повыситься потери конвекцией. Благодаря этому тепловой комфорт достигается при более низких температурах воздуха (18 °С), что позволяет лучше и чаще проветривать помещения. Лучистое тепло проникает в глубь тканей и, воздействуя непосредственно на их клеточные элементы, благоприятно влияет на обменные процессы в организме. Летом лучистая система отопления может использоваться для пропускания холодной воды для радиационного охлаждения помещения.

Все большее применение находят централизованные и локальные системы кондиционирования. Автономные кондиционеры позволяют в помещениях объемом до 150-180 м 3 поддерживать температуру воздуха в пределах 18...25 °С, относительную влажность 40...60%, скорость движения воздуха - до 0,3 м/с.

В закрытых помещениях различного типа во время пребывания там людей меняются химический состав и физические свойства воздуха: нарастает количество углекислого газа, водяных паров тяжелых ионов, уменьшается содержание кислорода, легких ионов, повышаются температура, запыленность и бактериальная загрязненность, появляются органические примеси. Для улучшения микроклимата и сохранения чистоты воздуха важнейшим средством является вентиляция и естественное проветривание (аэрация) помещений. В производственных помещениях, зрелищных учреждениях и других используется механическая приточно-вытяжная вентиляция. Системы вентиляции и кондиционирования производственных помещений описаны в главе 6. Большое значение для обеспечения необходимого теплового режима в жилых помещениях имеет правильная ориентация окон по сторонам света. Северные ориентации (50...310°) не рекомендуются во всех климатических районах. Западная и юго-западная ориентация окон (200...290°) не допускается в условиях жаркого и теплового климата из-за возможности перегрева. Восточная, юго-восточная и южная ориентация (70...200°) могут использоваться во всех климатических районах.

На температуру в помещениях большое влияние оказывает ветер, поэтому на Севере расположение зданий определяется направлением господствующих ветров. Для уменьшения их охлаждающего действия рекомендуется располагать в сторону господствующих холодных ветров глухие торцовые стены, а не длинную ось зданий. В районах с жарким климатом актуальной является борьба с перегревом помещений. Для этого используется правильная ориентация окон по сторонам света. Ориентация окон на юго-запад рекомендуется в условиях жаркого и теплого климата из-за перегрева помещений. Наиболее благоприятной является ориентация окон на восток, юго-восток и юг.

Защита помещений от солнечной радиации и перегрева достигается также за счет:

  • - увеличения толщины сильно инсолируемых стен до 0,7 м и более;
  • - увеличения высоты помещений - до 3,2 м;
  • - окраски наружных стен в белый цвет для лучшего отражения солнечных лучей;

устройством над окнами козырьков, ставен, жалюзеи и других солнцезащитных сооружений.

Контрольные вопросы

  • 1. Источники поступления теплоты в производственное помещение.
  • 2. За счет каких механизмов осуществляется обмен теплотой между человеком и окружающей средой? Объясните сущность этих механизмов.
  • 3. Что понимается под микроклиматом?
  • 4. Как параметры окружающей среды влияют на теплоотдачу организма человека?
  • 5. Что такое комфортные и дискомфортные условия?
  • 6. Какая разница между субъективной и объективной оценкой микроклимата?
  • 7. Принципы обеспечения комфортных микроклиматических условий.
  • 8. Как нормируются параметры микроклимата?
  • 9. Какие методы защиты применяются от солнечной радиации?
  • 10. Какой показатель используется для оценки микроклимата в помещениях с нагревающим микроклиматом?
  • 11. Виды производственного микроклимата.
  • 12. Каковы механизмы терморегуляции организма человека?
  • 13. От чего зависят оптимальные и допустимые параметры микроклимата?
  • 14. Методы обеспечения комфортных микроклиматических условий.

Для обеспечения комфортных условий необходимо поддерживать тепловой баланс между выделениями теплоты организмом человека и отдачей тепла окружающей среде. Обеспечить тепловой баланс можно, регулируя значения параметров микроклимата в помещении (температуры, относительной влажности и скорости движения воздуха). Поддержание указанных параметров на уровне оптимальных значений обеспечивает комфортные климатические условия для человека, а на уровне допустимых -- предельно допустимые, при которых система терморегуляции организма человека обеспечивает тепловой баланс и не допускает перегрева или переохлаждения организма.

Основным методом обеспечения требуемых параметров микроклимата и состава воздушной среды является применение систем вентиляции, отопления и кондиционирования воздуха.

Хорошая вентиляция помещения способствует улучшению самочувствия человека. Наоборот, плохая вентиляция приводит к повышенной утомляемости, снижению работоспособности. В жилых, общественных и производственных помещениях в результате жизнедеятельности людей, работы оборудования, приготовления пищи, сгорания природного газа выделяются вредные вещества, влага, теплота. В результате ухудшаются климатические условия, изменяется состав воздушной среды. Поэтому обеспечение хорошей вентиляции, регулярное проветривание помещений, является необходимым условием для обеспечения оптимальных условий для труда человека и сохранения его здоровья.

Наибольшее распространение для обеспечения оптимальных параметров микроклимата получила общеобменная приточно-вытяжная вентиляция. Применяется как механическая, так и естественная вентиляция.

Если в помещении возможно естественное проветривание, а объем помещения, приходящегося на одного человека, не менее 20 м3, производительность вентиляции должна быть не менее 20 м3/ч на одного человека. Если же объем помещения, приходящегося на одного человека менее 20 м3, производительность вентиляции должна быть не менее 30 м3/ч. При невозможности естественного проветривания производительность вентиляции должна быть не менее 60 м3/ч на одного человека.

При выделении в помещении от оборудования и технологических процессов влаги и теплоты производительность вентиляции должна быть увеличена по сравнению с указанными величинами. Необходимая производительность определяется расчетом с учетом количества выделяемой влаги и теплоты.

В жаркое время года, а также в горячих цехах на рабочих местах, подвергаемых интенсивному воздействию тепловых потоков от печей, раскаленных отливок и других источников тепла, дополнительно применяют воздушное душирование, заключающееся в обдуве работающего потоком воздуха с целью увеличения интенсивности конвективного теплообмена и отвода теплоты за счет испарения.


Скорость обдува составляет 1 ...3,5 м/с в зависимости от интенсивности теплового потока. Установки воздушного душирования бывают стационарные, когда воздух на рабочее место подается по системе воздуховодов с приточными насадками, и передвижные, в которых используется передвижной вентилятор. Примером передвижного устройства воздушного душирования является бытовой вентилятор, применяемый в жилых и непроизводственных помещениях в жаркую погоду, когда естественная вентиляция не может обеспечить тепловой баланс между человеком и окружающей средой. Воздушные оазисы позволяют улучшить метеорологические условия на ограниченном участке помещения, для чего этот участок со всех сторон отделяется перегородками и заполняется воздухом более прохладным и чистым, чем воздух в остальном помещении.

Для создания оптимальных метеорологических условий в помещениях применяют кондиционирование воздуха. Кондиционированием воздуха называется автоматическое поддержание в помещениях заданных оптимальных параметров микроклимата и чистоты воздуха независимо от изменения наружных условий и режимов внутри помещения. При кондиционировании может автоматически регулироваться температура воздуха, его относительная влажность и скорость подачи в помещение. Создание таких параметров воздуха осуществляется в специальных установках и устройствах, называемых кондиционерами. Кондиционеры бывают местными - для обслуживания отдельных помещений, комнат, и центральными - для обслуживания групп помещений, цехов и производств в целом. Сложность кондиционера определяется числом и точностью поддерживаемых в заданном диапазоне параметров. Простейшими кондиционерами являются бытовые кондиционеры, которые можно увидеть встроенными в окна и закрепленными с наружной стороны стен помещений. В холодное время года для поддержания в помещении оптимальной температуры воздуха применяется отопление. Отопление может быть водяным, паровым, электрическим.

1.Безопасность жизнедеятельности. Производственная безопасность и охрана труда: Учебные пособия для студентов средних профессиональных учебных заведений П.П.Кукин, В.Л.Лалин, Н.Л.Пономарёв, и др. Высшая школа 2001-431 с.

2.Безопасность жизнедеятельности. Учебник для студентов средних профессиональных учебных заведений С.В.Белов, В.А.Девисилов, А.Ф.Козьяков и др.; под общ. ред. С.В.Белова-М: Высшая школа, 2002-357 с.

3.Девисилов В.А Охрана труда: Учебник для студентов средних профессиональных заведений - М: Форум - Инфра - М, 2002-200 с.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ