Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ

Четыре новых химических элемента были официально добавлены в периодическую таблицу Менделеева. Таким образом был завершён её седьмой ряд. Новые элементы — 113, 115, 117 и 118 — были синтезированы искусственно в лабораториях России, США и Японии (то есть в природе их не существует). Однако официального признания открытий, сделанного группой независимых экспертов, пришлось ждать до конца 2015 года: Международный союз теоретической и прикладной химии объявил о пополнении 30 декабря 2015 года.

Все "новые" элементы были синтезированы в лабораторных условиях с помощью более лёгких ядер атомов. Это в старые добрые времена можно было выделить кислород путём сжигания оксида ртути - теперь же учёным приходится тратить годы и использовать массивные ускорители частиц, чтобы обнаружить новые элементы. К тому же, нестабильные агломерации протонов и нейтронов (именно такими предстают перед учёными новые элементы) держатся вместе лишь доли секунды прежде, чем распасться на более мелкие, но более устойчивые "осколки".

Теперь команды, получившие и доказавшие существование новых элементов таблицы, имеют право выдвинуть новые названия для этих элементов, а также два буквенных символа для их обозначения.

Элементы могут быть названы в честь одного из своих химических или физических свойств, а также по названию минерала, топонима или учёного. Также название может основываться на мифологических именах.

В настоящее время элементы носят неблагозвучные рабочие названия - унунтрий (Uut), унунпентий (Uup), унунсептий (Uus) и унуноктий (Uuo) — что соответствует латинским названиям цифр в их номере.

Международный союз теоретической и прикладной химии (ИЮПАК) сообщил, какие наименования считает наиболее подходящими для четырёх новых элементов таблицы Менделеева. Один из них рекомендуется назвать в честь российского физика, академика Юрия Оганесяна. Незадолго до этого корреспондент «КШ» встретился с Юрием Цолаковичем и сделал с ним большое интервью. Но ­ИЮПАК очень просит учёных не давать комментарии до 8 ноября, когда официально будут объявлены новые названия. Вне зависимости от того, чьё имя появится в таблице Менделеева, можно констатировать: Россия стала одним из лидеров в транс­урановой гонке, которая продолжается больше полувека.

Юрий Оганесян. Специалист в области ядерной физики, академик РАН, научный руководитель лаборатории ядерных реакций ­ОИЯИ, заведующий кафедрой ядерной физики Университета «Дубна». В качестве учени­ка Георгия Флёрова участвовал в ­синтезе резерфордия, дубния, сиборгия, бория и др. Среди открытий мирового уровня - так называемый холодный синтез ядер, оказавшийся чрезвычайно полезным инструментом для создания новых элементов.

В нижних строках таблицы Менделеева вы легко найдёте уран, его атомный номер 92. Все последующие элементы в природе сейчас не существуют и были открыты в результате очень сложных экспериментов.
Первыми создали новый элемент американские физики Гленн Сиборг и Эдвин Макмиллан. Так в 1940 году на свет появился плутоний. Позднее, совместно с другими учёными, Сиборг синтезировал америций, кюрий, берклий… Сам факт рукотворного расширения таблицы Менделеева в каком-то смысле сравним с полётом в космос.

Ведущие страны мира включились в гонку по созданию сверхтяжёлых ядер (при желании можно было бы провести аналогию с лунной гонкой, но здесь наша страна скорее побеждает). В СССР первый трансурановый элемент был синтезирован в 1964 году учёными из Объединённого института ядерных исследований (­ОИЯИ) в подмосковной Дубне. Это был 104-й элемент - нарекли резерфордием. Руководил проектом один из основателей ­ОИЯИ Геор­гий Флёров. Его имя тоже вписано в таблицу: флеровий, 114. А 105-й элемент получил название дубний.

Юрий Оганесян был учеником Флёрова и участвовал в синтезе резерфордия, а потом дубния, сиборгия, бория… Успехи наших физиков сделали Россию лидером транс­ура­но­вой гонки наравне с США, Германией, Японией (а может, и первой среди равных).

Новые элементы, о которых идёт речь - 113-й, 115-й, 117-й, 118-й, - были синтезированы в 2002–2009 годах в ОИЯИ на циклотроне У‑400. В ускорителях этого типа пучки тяжёлых заряженных частиц - протонов и ионов - разгоняют с помощью высокочастотного электрического поля, чтобы потом столкнуть друг с другом или с мишенью и изучить продукты их распада.

Все эксперименты проводились международными коллаборациями практически одновременно в разных странах. Например, 113-й элемент учёные из японского института ­RIKEN синтезировали независимо от остальных. В результате приоритет открытия был отдан им.

Новому химическому элементу вначале присваивается временное название, образованное от латинского числительного. Например, унуноктий - это «сто восемнадцатый». Потом научный коллектив - автор открытия - отправляет свои предложения в ИЮПАК. Комиссия рассматривает аргументы за и против. В частности, она рекомендует придерживаться следующих правил: «Вновь открытые элементы могут быть названы: (а) по имени мифологического персонажа или понятия (включая астрономический объект); (б) по названию минерала или аналогичного вещества; (в) по названию населённого пункта или географической области; (г) в соответствии со свойствами элемента или (д) по имени учёного…»

Наименования должны ­легко произноситься на большинст­ве известных языков и заключать в себе информацию, позволяющую однозначно классифицировать элемент. Например, все трансураны имеют двухбуквенные символы и оканчиваются на «-ий», если это металлы: резерфордий, дубний, сиборгий, борий…

Получат ли два новых элемента (115 и 118) «российские» имена, станет ясно в ноябре. Но впереди ещё много экспериментов, ведь согласно гипотезе об островах стабильности есть более тяжёлые элементы, которые способны существовать относительно продолжительное время. Такие элементы даже пытаются найти в природе, но вернее будет, если Оганесян синтезирует их на ускорителе.

Досье на новые элементы

Порядковый номер: 113

Как и кем был открыт: мишень из америция‑243 бомбардировали ионами кальция‑48 и получили изотопы унунпентия, которые распались на изотопы 113-го элемента. Синтезирован в 2003 году.

Приоритет в открытии: Институт физико-химических исследований (RIKEN), Япония.

Нынешнее название: унунтрий.

Предполагаемые свойства: тяжёлый легкоплавкий металл.

Предлагаемое название: нихоний (Nihonium, Nh). Этот элемент стал первым, открытым в Азии вообще и в Японии в частности. «Нихоний» - один из двух вариантов самоназвания страны. «Нихон» переводится как «страна восходящего солнца».

Порядковый номер: 115

Как и кем был открыт: мишень из америция‑243 бомбардировали ионами кальция‑48. Синтезирован в 2003 году Приоритет в открытии: коллаборация в составе ОИЯИ (Россия), Ливерморской национальной лаборатории (США) и Окриджской национальной лаборатории (США).

Нынешнее название: унунпентий.

Предполагаемые свойства: металл, похожий на висмут.

Предлагаемое название: московий (Moscovium, Mc). ИЮПАК одобрил название «московий» в честь Московской области, где находятся Дубна и ОИЯИ. Таким образом, этот российский город может уже второй раз оставить след в таблице Менделеева: дубнием давно и официально называется 105-й элемент.

Порядковый номер: 117

Как и кем был открыт: мишень из берклия‑249 обстреливали ионами кальция‑48. Синтезирован в 2009 году. Приоритет в открытии: ОИЯИ, Ливермор, Окридж.

Нынешнее название: унунсептий.

Предполагаемые свойства: формально относится к галогенам вроде йода. Реальные свойства пока не определены. Скорее всего, сочетает характеристики металла и неметалла.

Предлагаемое название: теннессин (Tennessine, Ts). Знак признания заслуг штата Теннесси (США), в том числе Окриджской национальной лаборатории, Университета Вандербильта и Университета Теннесси, в деле синтеза трансуранов.

Порядковый номер: 118

Как и кем был открыт: мишень из калифорния‑249 бомбардировали кальцием‑48. Синтезирован в 2002 году. Приоритет в открытии: ОИЯИ, Ливермор.

Нынешнее название: унуноктий.

Предполагаемые свойства: по химическим характеристикам относится к инертным газам.

Предлагаемое название: оганессон (Oganesson, Og). В честь научного руководителя лаборатории ядерных реакций ОИЯИ Юрия Оганесяна, внёсшего большой вклад в исследование сверхтяжёлых элементов. Публичное обсуждение возможных наименований продлится до 8 ноября, после чего комиссия примет окончательное решение.

на «Кота Шрёдингера»

Последние дополнения таблицы Менделеева — элементы 113 и 115, пока не имеющие собственных имен



Получение сверхтяжелых элементов 113 и 115 1. Пучок ионов кальция-48 (показан один) разгоняют до высоких скоростей в циклотроне и направляют на мишень из америция-243


2. Атом мишени — америций-243. Ядро, состоящее из протонов и нейтронов, и окружающее его размытое электронное облако


3. Разогнанный ион кальция-48 и атом мишени (америций-243) непосредственно перед столкновением


4. В момент столкновения рождается новый сверхтяжелый элемент с порядковым номером 115, живущий всего около 0,09 секунды


5. Элемент 115 распадается до элемента 113, живущего уже 1,2 секунды, и далее по цепочке из четырех альфа-распадов, длящейся около 20 секунд


6. Самопроизвольный распад конечного звена цепочки альфа-распадов — элемента 105 (дубния) на два других атома


Ученые из двух ведущих русских и американских ядерных исследовательских центров забросили гонку вооружений и, занявшись наконец делом, создали два новых элемента. Если какие-либо независимые исследователи подтвердят их результаты, новые элементы будут окрещены «унунтриум» и «унунпентиум». Химики и физики всего мира, не обращая внимания на уродливые названия, выражают восторг по поводу этого достижения. Кен Муди, руководитель американской команды, базирующейся в Ливерморской национальной лаборатории Лоуренса, заявляет: «Таким образом для периодической таблицы открываются новые перспективы».

Периодическая таблица, на которую ссылается Муди, — это всем знакомый плакат, украшающий стены любого помещения, где могут встретиться больше двух химиков одновременно. Все мы изучали ее на уроках химии в старших классах или на младших курсах ВУЗа. Таблица эта создана для того, чтобы объяснить, почему различные элементы вступают в соединения так, а не иначе. Химические элементы размещены в ней в строгом соответствии с атомным весом и химическими свойствами. Относительное положение того или иного элемента помогает предсказать, в какие отношения он будет вступать с другими элементами. После создания 113-го и 115-го общее число известных науке элементов достигло 116-ти (117-ти, если считать и элемент с порядковым номером 118, синтез которого уже наблюдали в Дубне в 2002 году, но официально это открытие пока не подтверждено. — Редакция «ПМ»).

История создания периодической таблицы началась в 1863 году (впрочем, и раньше делались робкие попытки: в 1817 году И.В. Дёберейнер попробовал объединить элементы в триады, а в 1843-м Л. Гмелин попытался расширить эту классификацию тетрадами и пентадами. — Редакция «ПМ»), когда молодой французский геолог Александр-Эмиль Бегуйе де Шанкуртуа расположил все известные к тому времени элементы в цепочку в соответствии с их атомным весом. Затем ленточку с этим списком он обернул вокруг цилиндра, и получилось так, что химически аналогичные элементы выстроились столбиками. По сравнению с методом проб и ошибок — единственным исследовательским подходом, которым пользовались тогдашние химики, — этот фокус с ленточкой выглядел радикальным шагом вперед, хотя серьезных практических результатов он не принес.

Примерно в то же самое время молодой английский химик Джон А.Р. Ньюландс точно так же экспериментировал с взаимным расположением элементов. Он отметил, что химические группы повторяются через каждые восемь элементов (подобно нотам, поэтому автор назвал свое открытие «законом октав». — Редакция «ПМ»). Полагая, что впереди великое открытие, он гордо выступил с сообщением перед Британским химическим обществом. Увы! Старшие, наиболее консервативные члены этого общества зарубили эту идею, объявив ее абсурдом, и на долгие годы она была предана забвению. (Не стоит слишком винить консервативных ученых — «закон октав» правильно предсказывал свойства лишь первых семнадцати элементов. — Редакция «ПМ»).

Российское возрождение

В XIX веке обмен научной информацией шел не так активно, как сейчас. Потому и неудивительно, что до возрождения забытой идеи прошло еще пять лет. На этот раз озарение явилось русскому химику Дмитрию Ивановичу Менделееву и его немецкому коллеге Юлиусу Лотару Мейеру. Работая независимо друг от друга, они додумались разместить химические элементы в семь столбцов. Положение каждого элемента задавалось его химическими и физическими свойствами. И вот тут, как это раньше заметили де Шанкуртуа и Ньюландс, элементы самопроизвольно объединились в группы, которые можно было бы назвать «химическими семействами».

Менделееву удалось глубже заглянуть в смысл происходящего. В результате возникла таблица с пустыми клетками, точно показывающими те места, где следует искать еще не открытые элементы. Это озарение выглядит еще более фантастичным, если вспомнить, что в те времена ученые не имели никакого представления о структуре атомов.

В течение следующего столетия периодическая таблица становилась все более и более информативной. Из простой приведенной здесь схемки она разрослась в огромную простыню, включив в себя удельный вес, магнитные свойства, точки плавления и кипения. Сюда же можно добавить сведения о строении электронной оболочки атома, а также список атомных весов изотопов, то есть более тяжелых или легких двойников, которые имеются у многих элементов.

Искусственные элементы

Пожалуй, самая главная новость, которую несли химикам первые варианты периодической таблицы, — это указание, где находятся еще не открытые элементы.

К началу XX века среди физиков стало крепнуть подозрение, что атомы устроены совсем не так, как об этом было принято думать. Начнем хотя бы с того, что это вовсе не монолитные шарики, а скорее — растянутые в пустом пространстве объемные структуры. Чем яснее становились представления о микромире, тем быстрее заполнялись пустые ячейки.

Прямые указания на пробелы в таблице радикально ускорили поиск еще не открытых, но реально присутствующих в природе элементов. А вот когда сформировалась точная теория, адекватно описывающая строение атомного ядра, родился новый подход к «дописыванию» периодической таблицы. Была создана и отработана методика для создания «искусственных» или «синтетических» элементов путем облучения имеющихся металлов потоками высокоэнергетических элементарных частиц.

Если добавить к ядру электрически незаряженные нейтроны, элемент станет тяжелее, но его химическое поведение не изменится. Зато при наращивании атомного веса элементы становятся все более нестабильными и обретают способность к самопроизвольному распаду. Когда это случается, некоторое количество свободных нейтронов и других частиц разлетается в окружающее пространство, однако большая часть протонов, нейтронов и электронов остается на месте и переструктурируется в форму более легких элементов.

Новички в таблице

В нынешнем феврале исследователи из LLNL (Ливерморская национальная лаборатория им. Лоуренса) и российского Объединенного института ядерных исследований (ОИЯИ), используя вышеописанную методику бомбардировки атомов, получили два абсолютно новых элемента.

Первый из них — элемент 115 — был получен после того, как америций обстреляли радиоактивным изотопом кальция. (Для справки — америций, нечасто встречаемый в быту металл, используется в дымовых датчиках обычной пожарной сигнализации.) В результате бомбардировки образовалось четыре атома 115-го элемента, однако через 90 миллисекунд они распались, и получился еще один новорожденный — элемент 113. Эти четыре атома прожили почти полторы секунды, прежде чем из них образовались более легкие, уже известные науке элементы. Искусственные элементы редко отличаются долгожительством — их врожденная нестабильность является следствием чрезмерного количества протонов и нейтронов в ядрах.

А теперь — касательно их несуразных имен. Несколько лет назад Международный союз чистой и прикладной химии (IUPAC) с штаб-квартирой в Research Triangle Park, N.C. постановил, что новым химическим элементам должны присваиваться культурно-нейтральные имена. Такой нейтральности можно достичь, если воспользоваться латинским произношением порядкового номера этого элемента в периодической таблице. Так, цифры 1, 1, 5 будут читаться «ун, ун, пент», а окончание «иум» прибавляется из соображений лингвистической связности. (Нейтральное латинское наименование и соответствующий трехбуквенный символ дается элементу временно — до тех пор, пока Международный союз чистой и прикладной химии не утвердит его окончательное название. Рекомендации этой организации, опубликованные в 2002 году, таковы: авторы открытия имеют приоритет в предложении имени для нового элемента, по традиции элементы могут называться в честь мифологических событий или персонажей (включая небесные тела), минералов, географических регионов, свойств элемента, известных ученых. — Редакция «ПМ»).

Пусть эти новые элементы живут совсем недолго и не встречаются за стенами лабораторий — все равно их создание означает больше, чем просто заполнение пустых ячеек и увеличение общего количества известных науке элементов. «Это открытие позволяет нам расширить применимость фундаментальных принципов химии, — говорит шеф Ливермора Муди, — а новые успехи химии ведут к созданию новых материалов и разработке новых технологий».

В ядерном реакторе с нейтронами в несколько МэВ могут проходить реакции (n,p) и (n,a). Таким путем образуются четыре важнейших радиоактивных изотопа 14 C, 32 P, 35 S и 3 H по реакциям:

14 N(n,p) 14 C; 32 S(n,p) 32 P; 35 Cl(n,a) 35 S; 6 Li(n,a) 3 H

Во всех перечисленных случаях из элемента мишени образуется радиоактивный изотоп другого химического элемента и тем самым появляется возможность выделения этих изотопов без носителя или с заданной радиоактивностью .

Для получения радионуклидов, кроме ядерных реакторов, находят широкое применение и другие источники бомбардирующих частиц и гамма - квантов, работа которых основана на протекании различных ядерных реакций. Мощные потоки заряженных частиц получают с помощью ускорителей (электростатических, линейных и циклотронов и др.), в которых заряженные частицы ускоряются под действием постоянных или переменных полей. В электростатических и линейных ускорителях частицы разгоняются одним электрическим полем, в циклотронах одновременно с электрическим действует и магнитное поле.

Рис. Синхрофазотрон

Для получения нейтронов с высокой энергией служат нейтронные генераторы, в которых используются ядерные реакции под действием заряженных частиц, чаще всего дейтронов (d, n) или протонов (p, n).

С помощью ускорителей в основном получают радионуклиды с разными Z .

С ускорителями связан прогресс последних лет в синтезе новых химических элементов . Так облучением в циклотроне альфа-частицами с энергией 41 МэВ и плотностью пучка 6×10 12 частиц/с энштейния были получены первые 17 атомов менделевия:

В дальнейшем это дало толчок к интенсивному развитию метода ускорения многозарядных ионов. Бомбардировкой урана-238 в циклотроне ионами углерода был получен калифорний:

U ( С 6+ , 6n) Cf

Однако легкие снаряды ионы углерода или кислорода - позволили продвинуться только до элементов 104-10. Со временем для синтеза более тяжелых ядер облучением стабильных изотопов свинца и висмута ионами хрома были получены изотопы с порядковыми номерами 106 и 107:

Pb ( Cr, 3n) Sg

209 83 B ( Cr, 2n) Bh

В 1985 г. в Дубне был получен альфа-активный элемент 108 –хассий (Hs) облучением Cf неоном-22:

Cf ( Ne +4n) Hs

В этом же году в лаборатории Г. Сиборга были синтезированы 109 и 110 элементы облучением урана-235 ядрами аргона 40.

Синтез дальнейших элементов осуществлялся путем бомбардировки U, кюрия-248, Es ядрами Са.

Синтез 114-го элемента был осуществлен в 1999 г. в Дубне путем слияния ядер кальция-48 и плутония-244. Новое, сверхтяжелое ядро охлаждается, испуская 3-4 нейтрона, а затем распадается путем испускания альфа-частиц до 110 элемента.

Для синтеза 116 элемента была проведена реакция слияния кюрия-248 с кальцием –48. В 2000 году три раза было зарегистрировано образование и распад 116-го элемента. Затем примерно через 0,05 с ядро элемента 116 распадается до 114 элемента и дальше следует цепочка из альфа-распадов до 110 элемента, который спонтанно распадается.

Периоды полураспада синтезируемых спонтанно распадающихся новых элементов составляли несколько микросекунд. Казалось бы, что продолжение синтеза более тяжелых элементов становится бессмысленным, так как время их существования и выход слишком малы. В то же время обнаруженные периоды полураспада этих элементов оказались гораздо больше ожидаемых. Поэтому можно предположить, что при некотором сочетании протонов и нейтронов должны получатся устойчивые ядра с периодами полураспада много тысяч лет.

И так, получение изотопов, отсутствующих в природе - задача чисто техническая, так как теоретически вопрос ясен. Нужно взять мишень, облучить ее потоком бомбардирующих частиц с соответствующей энергией и быстро выделить нужный изотоп. Однако подобрать подходящую мишень, бомбардирующие частицы оказывается не так легко.

Физики из Ливерморской национальной лаборатории в США в январе 2016 года сообщили о прогрессе в инерциальном управляемом термоядерном синтезе. При помощи новой технологии ученые сумели в четыре раза повысить эффективность подобных установок. Результаты исследований опубликованы в журнале Nature Physics, кратко о них проинформировали Ливерморская национальная лаборатория иКалифорнийский университет в Сан-Диего. О новых достижениях рассказывает «Лента.ру».

Человек давно пытается найти альтернативу углеводородным источникам энергии (углю, нефти и газу). Сжигание топлива загрязняет окружающую среду. Его запасы стремительно сокращаются. Выход из ситуации - зависимости от водных ресурсов, а также климата и погоды, - создание термоядерных электростанций. Для этого необходимо добиться управляемости реакций термоядерного синтеза, при которых выделяется необходимая человеку энергия.

В термоядерных реакторах тяжелые элементы синтезируются из легких (образование гелия в результате слияния дейтерия и трития). Обычные (ядерные) реакторы, наоборот, работают на распаде тяжелых ядер на более легкие. Но для синтеза необходимо разогреть водородную плазму до термоядерных температур (примерно таких, как в ядре Солнца, - сто миллионов градусов Цельсия и более) и удерживать ее в равновесном состоянии до возникновения самоподдерживающейся реакции.

Работы ведутся по двум перспективным направлениям. Первое связано с возможностью удержания разогретой плазмы при помощи магнитного поля. К подобного рода реакторам относятся токамак (тороидальная камера с магнитными катушками) и стелларатор. В токамаке по плазме в форме тороидального шнура пропускают электрический ток, в стеллараторе магнитное поле наводится внешними катушками.

Строящийся на территории Франции ИТЭР (Международный экспериментальный термоядерный реактор) относится к токамакам, а запущенный в декабре 2015 года в Германии Wendelstein 7-X - к стеллараторам.

Второе перспективное направление управляемого термоядерного синтеза связано с лазерами. Физики предлагают при помощи лазерного излучения быстро нагреть и сжать до необходимых температур и плотностей вещество, чтобы оно, будучи в состоянии инерционно удерживаемой плазмы, обеспечило протекание термоядерной реакции.

Инерциальный управляемый термоядерный синтез предполагает использование двух основных методов зажигания предварительно сжатой мишени: ударного - при помощи сфокусированной ударной волны, и быстрого - имплозии (взрыва внутрь) сферического водородного слоя внутри мишени. Каждый из них (в теории) должен обеспечить оптимальное преобразование лазерной энергии в импульсную и ее последующую передачу сжатой сферической термоядерной мишени.

Установка в Национальном комплексе лазерных термоядерных реакций в СШАприменяет второй подход, предполагающий разделение фаз сжатия и нагрева. Это, по словам ученых, позволяет снизить плотность топлива (или его массу) и обеспечить более высокие коэффициенты усиления. Нагрев порождается коротким импульсом петаваттного лазера: интенсивный электронный пучок отдает свою энергию мишени. Эксперименты, о которых сообщается в последнем исследовании, проводились в Нью-Йорке на установке OMEGA-60 в Лаборатории лазерной энергетики Рочестерского университета, включающей в себя 54 лазера с суммарной энергией 18 килоджоулей.

Изученная учеными система устроена следующим образом. Мишень представляет собой пластиковую капсулу, на внутреннюю стенку которой нанесен тонкий дейтерий-тритиевый слой. При облучении капсулы лазерами она расширяется и заставляет сжиматься расположенный внутри нее водород (в ходе первой фазы), который разогревается (в ходе второй фазы) до плазмы. Плазма из дейтерия и трития дает рентгеновское излучение и давит на капсулу. Данная схема позволяет системе не испариться после ее облучения лазером и обеспечивает более равномерный нагрев плазмы.

В своих опытах ученые в пластиковую оболочку ввели медь. Когда лазерный луч направляется на капсулу, та выбрасывает быстрые электроны, которые попадают на медные индикаторы и заставляют их испускать рентгеновские лучи. Ученые впервые смогли представить технику визуализации электронов K-оболочки, позволяющую отслеживать перенос энергии электронами внутри капсулы и в результате более аккуратно рассчитывать параметры системы. Важность этой работы заключается в следующем.

Достижению высокой степени сжатия мешают быстрые электроны, в энергию которых превращается большая доля поглощенного мишенью излучения. Длина свободного пробега таких частиц по порядку совпадает с диаметром мишени, вследствие чего она преждевременно перегревается и не успевает сжаться до нужных плотностей. Выполненное исследование позволило заглянуть внутрь мишени и отследить происходящие там процессы, предоставив новую информацию о необходимых для оптимального излучения мишени параметрах лазера.

Работы, относящиеся к инерциальному термоядерному синтезу, кроме США ведутся в Японии, Франции и России. В городе Саров Нижегородской области на базе Всероссийского научно-исследовательского института экспериментальной физики в 2020 году планируется ввести в строй лазерную установку двойного назначения УФЛ-2М, которая среди прочих задач должна использоваться для исследований условий зажигания и горения термоядерного топлива.

Эффективность термоядерной реакции определяется как отношение энергии, выделившейся в реакции синтеза, к полной энергии, потраченной на нагрев системы до необходимых температур. Если эта величина больше единицы (ста процентов), лазерный термоядерный реактор можно считать успешным. В экспериментах физикам удалось до семи процентов энергии лазерного излучения передать топливу. Это в четыре раза превышает ранее достигнутую эффективность систем быстрого зажигания. Компьютерное моделирование позволяет спрогнозировать повышение эффективности до 15 процентов.

Опубликованные результаты повышают шансы на то, что Конгресс США продлит финансирование мегаджоулевых установок, таких как Национальный комплекс лазерных термоядерных реакций в городе Ливермор (затраты на создание и поддержание его работоспособности превысили четыре миллиарда долларов). Несмотря на скептицизм, сопровождающий исследования в области термоядерного синтеза, они медленно, но уверенно движутся вперед. В этой области перед учеными стоят не фундаментальные, а технологические задачи, требующие международного сотрудничества и адекватного финансирования.



Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Выселение. Приватизация. Перепланировка. Ипотека. ИСЖ